Skip to main content

Chapter 2 1653 — ‘Tractatus’

The mathematical understanding of telescopes

  • Chapter
Lenses and Waves

Part of the book series: Archimedes ((ARIM,volume 9))

  • 689 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. OC 1, 215. “Nunc autem in dioptricis totus sum...”

    Google Scholar 

  2. Berkel, “Illusies”, 83–84. In the 1660s Huygens would start to seek patronage abroad, first in Florence and then, successfully in Paris.

    Google Scholar 

  3. The most thorough-going account still are the ‘avertissements’ by the editors of the Oeuvres Complètes. Southall, “Some of Huygens’ contributions” reported on Huygens’ dioptrics after the publication of volume 13. Harting, Christiaan Huygens had earlier discussed it briefly. In relationship with his astronomical work and his practical dioptrics, Albert van Helden, “Development” and Anne van Helden/Van Gent, The Huygens collection and “Lens production” discuss some topics. In the context of the history of seventeenth-century geometrical optics — which in its own right has little been studied — Shapiro, “‘Optical Lectures’” mention Huygens’ contributions. They are remarkably absent from the Malet, “Isaac Barrow” and “Kepler and the telescope”. Hashimoto, “Huygens, dioptrics” is the only effort to discuss Huygens’ dioptrics in the context of his broader oeuvre.

    Google Scholar 

  4. OC 13, 1–271. The editors of the Oeuvres Complétes have labeled it Dioptrica, Pars I. Tractatus de refractione et telescopiis. Its content stems from the 1650s. The original version of Tractatus does not exist anymore. A copy was made in Paris by Niquet — probably in 1666 or 1667, at the beginning of Huygens’ stay in Paris — on which the text of the Oeuvres Complètes is based. The editors assume Niquet’s copy of Tractatus is largely identical with the original 1653 manuscript; “Avertissement”, XXX.

    Google Scholar 

  5. OC 1, 305–305.

    Google Scholar 

  6. Descartes, Geometrie, 352 (AT6, 424). “Au reste affin que vous sçachiées que la consideration des lignes courbes icy proposée n’est pas sans usage, & qu’elles ont diverses proprietés, qui ne cedent en rien a celles des sections coniques, ie veux encore adiouster icy lľexplication de certaines Ovales, que vous verrés estres tres utiles pour la Theorie de la Catoptrique, & de la Dioptrique.”

    Google Scholar 

  7. Descartes, Geometrie, 358–359 (AT6, 430–431). The left part 2A2 is a mirror that reflects rays intersecting in G so that they (virtually) intersect in F, provided that it diminishes the ‘tendency’ of the rays to a given degree.

    Google Scholar 

  8. Descartes, Geometrie, 353–354 (AT6, 424–426). The curve satisfies the equation F2 − FA = n(G2 − GA).

    Google Scholar 

  9. OC 1, 305. See note 9: the equation becomes AF = nAG.

    Google Scholar 

  10. Reproduced in OC 14, 419.

    Google Scholar 

  11. In Tractatus, he merely mentioned that a spherical surface is aplanatic for certain points: OC13, 64–67.

    Google Scholar 

  12. OC 1, 190–192.

    Google Scholar 

  13. OC 1, 192.

    Google Scholar 

  14. OC 1, 201–205.

    Google Scholar 

  15. OC 1, 204. “... adeo ut nullius radij concursus cum axe contingat ultra punctum O.”

    Google Scholar 

  16. OC 1, 224–226.

    Google Scholar 

  17. OC1, 215.

    Google Scholar 

  18. OC1, 219–223.

    Google Scholar 

  19. OC13, 16–19

    Google Scholar 

  20. OC13, 40–79.

    Google Scholar 

  21. OC13, 70–73.

    Google Scholar 

  22. OC13, 42–47.

    Google Scholar 

  23. OC13, 88–89. Equivalent to the modern formula 1/f=(n−1)(1/R1+1/R2)

    Google Scholar 

  24. OC13, 98–109.

    Google Scholar 

  25. OC13, 122–125.

    Google Scholar 

  26. OC13, 118–123. In modern terms, L is the optical center.

    Google Scholar 

  27. OC13, 114–119.

    Google Scholar 

  28. OC13, 176n1.

    Google Scholar 

  29. OC13, 174–179.

    Google Scholar 

  30. OC13, 186–197.

    Google Scholar 

  31. “This is the great Proposition asserted by most Dioptrick Writers, but hitherto proved by none (for as much as I know)...” Molyneux, Dioptrica nova, 161.

    Google Scholar 

  32. OC13, 244–247.

    Google Scholar 

  33. OC13, 246–253.

    Google Scholar 

  34. Hug29, 151–167.

    Google Scholar 

  35. OC13, 198–199.

    Google Scholar 

  36. OC13, 252n1. See below, section 3.1.2.

    Google Scholar 

  37. OC13, 258–261.

    Google Scholar 

  38. OC1, 280; 301–303; 321–322. Huygens did not pin much faith in Van Schooten’s proposal.

    Google Scholar 

  39. Van Helden, Invention, 35–36; Galileo, Sidereus nuncius, 3–4 (Van Helden’s introduction).

    Google Scholar 

  40. De Waard, Uitvinding, 105–225; Van Helden, Invention, 20–25.

    Google Scholar 

  41. OC13, 436–437.

    Google Scholar 

  42. Van Helden, Invention, 21, 36.

    Google Scholar 

  43. Van Helden, Invention, 26; Galileo, Sidereus nuncius, 6, 9 (Van Helden’s Introduction).

    Google Scholar 

  44. Van Helden, “Galileo and the telescope”, 153–157.

    Google Scholar 

  45. Galileo, Sidereus nuncius, 94 (Van Helden’s Conclusion).

    Google Scholar 

  46. Galileo, Sidereus nuncius, 37–39.

    Google Scholar 

  47. Kepler, Conversation, [19–21].

    Google Scholar 

  48. Kepler, Dioptrice, dedication (KGW4, 331). “... circaque eam alij de palma primae inventionis certarent, alij de perfectione instrumenti sese jactarent amplius, quod ibi casus potissimum insit, hic Ratio dominetur: GALILAEUS vero super usu patefacto in perquirendis arcanis Astronomicis speciosissimum triumphum ageret; ut cui consilium suppeditaverat industria, nec successum negaverat fortuna: Ego doctus honesta quadam aemulatione novum Mathematicis campum aperui exerendi vim ingenij, hoc est causarum lege geometrica demonstrandarum, quibus tam exoptati, tam jucunda varietate multiplices effectus inniterentur.”

    Google Scholar 

  49. Straker, “Kepler’s theory of pinhole images”, 276–278.

    Google Scholar 

  50. Cited and translated in: Straker, “Kepler’s theory of pinhole images”, 278.

    Google Scholar 

  51. Straker, “Kepler’s theory of pinhole images”, 275–276; 280–282.

    Google Scholar 

  52. Dupré points out Risner’s programmatic discussion of the science of optics in the preface to the edition which constitute an important, yet still little studied, agenda for seventeenth-century optics. Dupré, Galileo, the Telescope, 54.

    Google Scholar 

  53. See Lindberg, “Laying the foundations”, 14–29.

    Google Scholar 

  54. Alhacen, Optics I, 68 (book 1, section 17) and 77 (book 1, section 46).

    Google Scholar 

  55. Dupré, Galileo, the telescope, 31.

    Google Scholar 

  56. Kepler, Paralipomena, 4 (KGW2, 16). “⋯ hae tenebrae sint Astronomorum oculi, hi defectus doctrinae sint abundantia, hi naevi mentes mortalium preciosissimis pictu ris illustrent.” Translation Donahue, Optics, 16.

    Google Scholar 

  57. Kepler, Paralipomena, 201 (KGW2, 181). “Itaque non oportet nos ad restotas respicere, sed ad rerum singular puncta,⋯” Translation Donahue, Optics, 217.

    Google Scholar 

  58. Rosen, “The invention of eyeglasses”, 13–46.

    Google Scholar 

  59. Lindberg, “Optics in 16th century Italy” 136–141. Maurolyco had preceded Kepler in his analysis of the pinhole image: Lindberg, “Optics in 16th century Italy”, 132–135; Lindberg, “Laying the foundations”.

    Google Scholar 

  60. Kepler, Paralipomena, 200–202 (KGW2, 181–183).

    Google Scholar 

  61. Malet, “Kepler and the telescope” offers a detailed discussion of Dioptrice, without however presenting it as a part of the ‘optical part of astronomy’.

    Google Scholar 

  62. Kepler, Dioptrice, dedication (KGW4, 331).

    Google Scholar 

  63. Kepler, Dioptrice, 11 (KGW4, 363).

    Google Scholar 

  64. Kepler, Dioptrice, 12–15 (KGW4, 363–367).

    Google Scholar 

  65. Kepler, Dioptrice, 45–49 (KGW4, 388–393).

    Google Scholar 

  66. Kepler, Dioptrice, 16–18 (KGW4, 367–369).

    Google Scholar 

  67. Kepler, Dioptrice, dedication (KGW4, 335).

    Google Scholar 

  68. Kepler, Dioptrice, 21–24 (KGW4, 371–372).

    Google Scholar 

  69. Kepler, Dioptrice, 35–42 (KGW4, 381–387).

    Google Scholar 

  70. Kepler, Dioptrice, 42–43 (KGW4, 387–388).

    Google Scholar 

  71. A possible source of inspiration may have come from the analogous configuration of the eye and a convex spectacle glass, as the eye acts as a convex lens does. See also Malet, “Kepler and the telescope”, 119–120.

    Google Scholar 

  72. OC1, 6 (Stampioen’s list of recommended readings spans pages 5–10) and OC6, 215.

    Google Scholar 

  73. Della Porta’s account of refraction by spheres and lenses in De refractione is discussed in Lindberg, “Optics in 16th century Italy”, 143–146.

    Google Scholar 

  74. Della Porta, De Telescopio, 113–114.

    Google Scholar 

  75. Della Porta, De telescopio, 141–142.

    Google Scholar 

  76. Compare Lindberg, “Optics in 16th century Italy”, 146–147.

    Google Scholar 

  77. Ronchi, “Refractione au Telescopio”, 56 and 34. “They know nothing of perspective.” and “... and it pleases me that the idea of the telescope in a tube has been mine;...”

    Google Scholar 

  78. Pedersen, “Sagredo’s optical researches”, 144–148.

    Google Scholar 

  79. KGW4, “Nachbericht”, 476.

    Google Scholar 

  80. Dupré, Galileo, the Telescope, chapters 4 to 6 in particular.

    Google Scholar 

  81. Rashed, “Pioneer”, 478–486.

    Google Scholar 

  82. For Snel see: Hentschel, “Brechungsgesetz”. It is possible that Wilhelm Boelmans in Louvain somewhat later discovered the sine law independently. Ziggelaar, “The sine law of refraction”, 250.

    Google Scholar 

  83. Gaukroger, Descartes, 138–146. Dupré, Galileo, the Telescope, 53–54.

    Google Scholar 

  84. Descartes, AT6, 147. “Des moyens de perfectionner la vision. Discours septiesme.”

    Google Scholar 

  85. Descartes, AT6, 155–160.

    Google Scholar 

  86. Descartes, AT6, 165. “Des figures que doivent avoir les corps transparens pour detourner les rayons par refraction en toutes les façons qui servent a la veuë”

    Google Scholar 

  87. Descartes, AT6, 82–83. Ribe, “Cartesian optics” offers an enlightening account of the artisanal roots of La Dioptrique.

    Google Scholar 

  88. Descartes, AT6, 82.

    Google Scholar 

  89. OC10, 402–403. “Mr. des Cartes n’a connu quel seroit ľeffet de ses Lunettes hyperboliques, et en a presumè incomparablement plus qu’il ne devoit. n’entendant pas assez cette Theorie de la dioptrique, ce qui paroit par sa demonstration très mal bastie des Telescopes.”

    Google Scholar 

  90. Stampioen, Wis-konstigh ende reden-maetigh bewys, 58. “... mijn Knecht Ondersoeck sal hem eens een beter Verre-kijcker sonder cirkeltjes daer toe weten te drayen:... Maer niettemin ť geen dese Mathematicien al over 6 Iaren belooft heeft te doen, blijft nog on-vol-daen.”

    Google Scholar 

  91. Stroud, Minute, 20; Prins, “Hobbes on light and vision”, 129–132. On Hobbes’ derivation of the sine law, see section 5.2.1.

    Google Scholar 

  92. Lohne, ”Geschichte des Brechungsgesetzes”, 166.

    Google Scholar 

  93. Barrow, Lectiones, [82–83].

    Google Scholar 

  94. Compare Shapiro, “The Optical Lectures”, 130 & 133–134.

    Google Scholar 

  95. Compare Shapiro, “The Optical Lectures”, 150–151; and Malet, “Isaac Barrow”, 286.

    Google Scholar 

  96. Shapiro, “The Optical Lectures”, 149–150.

    Google Scholar 

  97. Barrow, Lectiones, [168].

    Google Scholar 

  98. Newton, Optical Papers 1, 427.

    Google Scholar 

  99. Halley, “Instance”, 960.

    Google Scholar 

  100. See: Albury, “Halley, Huygens, and Newton”, 455–457.

    Google Scholar 

  101. Galileo, Sidereus nuncius, 112–113 and 92–93 (Van Helden’s conclusion). See Dupré, Galileo and the telescope, 175–178.

    Google Scholar 

  102. Schuster, “Descartes opticien” and Van Berkel, “Descartes’ debt”.

    Google Scholar 

  103. Beeckman, Journal, II, 209–211; 294–296. For lens grinding see down, page 57.

    Google Scholar 

  104. For the second idea see Beeckman, Journal, II, 367–368. For a later consideration see for example: III, 296.

    Google Scholar 

  105. Beeckman, Journal, II, 296; 357.

    Google Scholar 

  106. Beeckman, Journal, III, 109–110.

    Google Scholar 

  107. Van Helden, Measure, 118–119.

    Google Scholar 

  108. Compare Dear, Discipline and Experience, 210–216.

    Google Scholar 

  109. Van Helden, “Astronomical telescope”, 26–32. See also below section 3.1.1.

    Google Scholar 

  110. Rigaud, Correspondence, 46: “This is that admirable secret, which, as all other things, appeared when it pleased the All Disposer, at whose direction a spider’s line drawn in an opened case could first give me by its perfect apparition, when I was with two convexes trying experiments about the sun, the unexpected knowledge.”

    Google Scholar 

  111. McKeon, “Les débuts I”, 258–266.

    Google Scholar 

  112. Old Corr 3, 293: “... prendre les diametres du soleil, de la lune et des planetes par une methode que nous avons, Monsieur Picard et moy, que ie croy la meilleure de toutes celles que ľon a pratiquer Jusques a present,...”

    Google Scholar 

  113. McKeon, “Les débuts I”, 266–269.

    Google Scholar 

  114. McKeon, “Les débuts I”, 286. In Micrographia (1665) Hooke had suggested that a scale may be inserted into the focal plane of telescopes. Hooke, Micrographia, 237.

    Google Scholar 

  115. OC21, 348–351.

    Google Scholar 

  116. Van Helden, Measure, 120–121.

    Google Scholar 

  117. OC21, 352–353.

    Google Scholar 

  118. McKeon, “Les débuts I”, 286; Van Helden, Measure, 118.

    Google Scholar 

  119. McKeon, “Renouvellement”, 122.

    Google Scholar 

  120. McKeon, “Renouvellement”, 126.

    Google Scholar 

  121. Flamsteed, Gresham lectures, 34–39 (Forbes’s introduction).

    Google Scholar 

  122. Old Corr 9, 326–327.

    Google Scholar 

  123. Old Corr 10, 520.

    Google Scholar 

  124. Old Corr 4, 448.

    Google Scholar 

  125. Van Helden, “Huygens and the astronomers”, 156-157; Van Helden, Measure, 127–129.

    Google Scholar 

  126. Flamsteed, Gresham lectures, 154.

    Google Scholar 

  127. Flamsteed, Gresham lectures, 119 & 132. Flamsteed later deleted the part between brackets.

    Google Scholar 

  128. Flamsteed, Gresham lectures, 120–127.

    Google Scholar 

  129. Flamsteed, Gresham lectures, 136.

    Google Scholar 

  130. Flamsteed, Gresham lectures, 140–143.

    Google Scholar 

  131. Flamsteed, Gresham lectures, 40; 146n2 (Forbes’ introduction).

    Google Scholar 

  132. Flamsteed, Gresham lectures, 8–9; 40 (Forbes’ introduction).

    Google Scholar 

  133. Flamsteed, Gresham lectures, 39 (Forbes’ introduction).

    Google Scholar 

  134. Flamsteed, Gresham lectures, 149.

    Google Scholar 

  135. Flamsteed, Gresham lectures, 4–5 (Forbes’ introduction).

    Google Scholar 

  136. Molyneux, Dioptrica nova, (Admonition to the reader).

    Google Scholar 

  137. Molyneux mentioned Kepler, Cavalieri, Hérigone, Dechales, Fabri, Gregory and Barrow.

    Google Scholar 

  138. Molyneux, Dioptrica nova, (Admonition to the reader).

    Google Scholar 

  139. Molyneux, Dioptrica nova, 19–23.

    Google Scholar 

  140. Molyneux, Dioptrica nova, 20.

    Google Scholar 

  141. Molyneux, Dioptrica nova, 22.

    Google Scholar 

  142. Molyneux, Dioptrica nova, 9.

    Google Scholar 

  143. Molyneux, Dioptrica nova, 24. From the preceding it will be clear, that following Molyneux’s line of thought this distance should be zero, for both points are by definition the same.

    Google Scholar 

  144. Molyneux, Dioptrica nova, 36–38.

    Google Scholar 

  145. Molyneux, Dioptrica nova, 38.

    Google Scholar 

  146. Picolet, “Correspondence”, 38–39.

    Google Scholar 

  147. «... peuuent aussi estre sujets a certaines refractions qu’il faut bien connoistre.” Quoted in McKeon, “Renouvellement”, 126–128. It is found in: A. Ac. Sc., Registres, t. 3, fol 156 ro — 164 vo spéc. 157 vo.

    Google Scholar 

  148. Blay, “Travaux de Picard”, 329–332. Blay cites several references.

    Google Scholar 

  149. Blay, “Travaux de Picard” 343. “Ce que nous venons ďexpliquer touchant la construction des lunettes ďapproche, n’est que par rapport α ľusage que ľon en fait dans les instruments qui servent α ľobserver,...”

    Google Scholar 

  150. Divers Ouvrages de Mathematique et de Physique, par Messieurs de ľAcademie Royale des Sciences (1693), 375–412.

    Google Scholar 

  151. OC13, “Avertissement”, 7.

    Google Scholar 

  152. Blay, “Travaux de Picard”, 340.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

(2005). Chapter 2 1653 — ‘Tractatus’. In: Lenses and Waves. Archimedes, vol 9. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2698-8_2

Download citation

Publish with us

Policies and ethics