Skip to main content

Quantum Chemical Investigations of the Growth Models of Single Wall Carbon Nanotubes on Polyhen Rings, Fullerenes and Diamond Surface

  • Conference paper
Hydrogen Materials Science and Chemistry of Carbon Nanomaterials

Abstract

Quantum-mechanical MNDO calculations were performed for models of the growth of achiral carbon nanotubes from polyene rings of the cis and trans types, fullerene and diamond (111) surface. Several variants of the growth of nanotubes (by absorption of dimers or trimers or a mixed set of species) were considered. A comparison of the obtained characteristics, in particular, the total energies of sequential absorption, allowed several conclusions to be drawn on the possibility of growth of cyclic nanotubes of the (n, n) and (n, 0) types from polyene rings by absorption of carbon dimers as the most probable process. The orbital-stoihiometric cluster (OSC) model in the framework of quantum chemical MNDO-scheme has been applied to simulate the diamond nanocluster in order to study carbon nanotube generation process on diamond (111) surface. The comparison of the received characteristics of processes, in particular adsorption energy, has shown, that most favourable process is carbon monomer sorption on a pure diamond (111) surface. Processes of nanotube origin on surface quantum dots, which have been simulated by adsorbed Li, Na, K, Be, and H atoms, have shown high efficiency of nanotube growth: all of them proceed without energy barriers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dresselhaus M.S., Dresselhaus G., Eklund P.C. Science of Fullerenes and Carbon Nanatubes, New York: Academic Press, 1996, 965 p.

    Google Scholar 

  2. Ivanovskii A.L., Kvantovaya khimiya v materialovedenii. Nanotubulyarnye formy veshchestva (Quantum Chemistry in Materials Science: Nanotube Forms of Substance), Ekaterinburg: UrORAN, 1999, 176 p.

    Google Scholar 

  3. Chernozatonskii L.A. Zarozdenie grafitizirovannih nanotrub na almazopodobnih kristallitah. Himich. Fiz 1997; 16(6): 78–87.

    CAS  Google Scholar 

  4. Lebedev N.G., Ponomareva I.V., and Litinskii A.O. OSC-model of generation of carbon nanotubes on quantum dots of diamond surface. Abstracts of Papers, 5th Biennial Int. Workshop “Fullerenes and Atomic Clusters”, St. Petersburg, 2001, p. P278.

    Google Scholar 

  5. Lebedev N.G., Zaporotskova I.V., Chernozatonskii L.A. A quantum-chemical analysis of models of growth of single-layer carbon nanotubes on polyene rings. Russian J. Phys. Chem. 2003; 77(3): 431–438.

    Google Scholar 

  6. Zaporotskova, I.V. Lebedev N.G., Chernozatonskii L.A. Simulation of carbon nanotube growth processes on fullerene hemisphere substrate. Zurnal Fizicheskoi Khimii 2003; 77(12): 2254–2257 (accepted).

    Google Scholar 

  7. Lebedev N.G., Ponomareva I.V., Chernozatonskii L.A. The orbital-stoichiometric cluster model of carbon nanotube generation on quantum dots of diamond surface. International Journal of Quantum Chemistry 2003; 95(3) (accepted).

    Google Scholar 

  8. Litinskii A.O., Lebedev N.G. A model of an ion-incorporated cluster with orbital stoichiometry for calculating interactions between the solid surfaces and gas-phase molecules. Russian J. Phys. Chem. 1995; 69(3): 119–124.

    Google Scholar 

  9. Dewar M.J.S., Thiel W. Ground states of molecules. 38. The MNDO method. Approximations and Parameters. J. Am. Chem. Soc. 1977; 99: 4899–4906.

    Article  CAS  Google Scholar 

  10. Dewar M.J.S., Thiel W. A semiempirical model for the two-center repulsion integrals in the NDDO approximation. Theor. Chim. Acta 1977; 46: 89–104.

    Article  CAS  Google Scholar 

  11. Eletskii A.V. Uglerodnie nanotrubki i ih emissionnie svoistva. Uspehi Fiz. Nauk 2002; 172(4): 401–438.

    Article  Google Scholar 

  12. Saito R., Dresselhaus M.S., Dresselhaus G. Physical properties of carbon nanotubes, Imperial College Press, 1999, 251 p.

    Google Scholar 

  13. Dai H. Nanotube growth and characterization. Carbon nanotubes, Topics Appl. Phys. 2001; 80: 29–53.

    Article  CAS  ADS  Google Scholar 

  14. Charlier J.-Ch., Iijima S. Growth mechanisms of carbon nanotubes. Carbon nanotubes, Topics Appl. Phys. 2001; 80: 55–81.

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this paper

Cite this paper

Lebedev, N.G., Zaporotskova, I.V., Chernozatonskii, L.A. (2004). Quantum Chemical Investigations of the Growth Models of Single Wall Carbon Nanotubes on Polyhen Rings, Fullerenes and Diamond Surface. In: Veziroglu, T.N., Yu. Zaginaichenko, S., Schur, D.V., Baranowski, B., Shpak, A.P., Skorokhod, V.V. (eds) Hydrogen Materials Science and Chemistry of Carbon Nanomaterials. NATO Science Series II: Mathematics, Physics and Chemistry, vol 172. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2669-2_27

Download citation

Publish with us

Policies and ethics