Learning from Marine Creatures How to Design Micro-Lenses

  • J. Aizenberg
  • G. Hendler
Conference paper
Part of the NATO Science Series II: Mathematics, Physics and Chemistry book series (NAII, volume 171)


Multidisciplinary groups involving materials scientists, chemists, physicists, biologists work togehter trying to understand the mechanisms controlling the formation of elaborate structure of biological minerals. We believe that further studies of biological systems will increase our understanding of how organisms evolved their sophisticated optical structures for survival and adaptation and will provide additional materials concepts and design solutions. Ultimately, these biological principles will improve our current capabilities to fabricate optical elements and contribute to the construction of novel, adaptive, micro-scale optical devices.


Spherical Aberration Calcite Crystal Microlens Array Amorphous Calcium Carbonate Interference Lithography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alper, M., Calvert, P.D., Frankel, R., Rieke, P.C. and Tirrell, D.A. (1991) Materials synthesis based onbiological processes,. Materials Research Society, Pittsburgh.Google Scholar
  2. 2.
    Braun, P.V., Osenar, P. and Stupp, S.I. (1996) Semiconducting superlattices templated by molecularassemblies, Nature 380, 325–328.CrossRefGoogle Scholar
  3. 3.
    Mann, S., Archibald, D.D., Didymus, J.M., Douglas, T., Heywood, B.R., Meldrum, F.C. and Reeves, N.J. (1993) Crystallization at inorganic-organic interfaces — Biominerals and biomimetic synthesis, Science 261, 1286–1292.Google Scholar
  4. 4.
    Heuer, A.H., Fink, D.J., Laraia, V.J., Arias, J.L., Calvert, P.D., Kendall, K., Messing, G.L., Blackwell, J., Rieke, P.C., Thompson, D.H., Wheeler, A.P., Veis, A. and Caplan, A.I. (1992) Innovative materialsprocessing strategies’ a biomimetic approach, Science 255, 1098–1105.Google Scholar
  5. 5.
    Mann, S. and Ozin, G.A. (1996) Synthesis of inorganic materials with complex form, Nature 382, 313–318.CrossRefGoogle Scholar
  6. 6.
    Addadi, L. and Weiner, S. (1992) Control and design principles in biological mineralization. Angew. Chem.-Int. Edit. Engl. 31, 153–169.Google Scholar
  7. 7.
    Aizenberg, J., Black, A.J. and Whitesides, G.M. (1999) Control of crystal nucleation by patterned self-assembled monolayers, Nature 398, 495–498.Google Scholar
  8. 8.
    Lowenstam, H. A. and Weiner, S. (1989) On Biomineralization, Oxford Univ. Press, Oxford.Google Scholar
  9. 9.
    Wainwright, S.A., Biggs, W.D., Currey, J.D. and Gosline, J.M. (1976) Mechanical design in organisms, John Wiley and Sons, New York.Google Scholar
  10. 10.
    Aizenberg, J., Tkachenko, A., Weiner, S., Addadi, L. and Hendler, G. (2001) Calcitic microlenses as part of the photoreceptor system in brittlestars, Nature 412, 819–822.CrossRefGoogle Scholar
  11. 11.
    Cattaneo-Vietti, R., Bavestrello, G., Cerrano, C., Sara, M., Benatti, U., Giovine, M. and Gaino, E. (1996) Optical fibres in an Antarctic sponge, Nature 383, 397–398.CrossRefGoogle Scholar
  12. 12.
    Sundar, V.C., Yablon, A.D., Grazul, J.L., Ilan, M. and Aizenberg, J. (2003) Fiber-optical features of a glass sponge, Nature 424, 899–900.CrossRefGoogle Scholar
  13. 13.
    Sarikaya, M., Fong, H., Sunderland, N., Flinn, B.D., Mayer, G., Mescher, A. and Gaino, E. (2001) Biomimetic model of a sponge-spicular optical fiber — mechanical properties and structure, J. Mater. Res. 16, 1420–1428.Google Scholar
  14. 14.
    Hyman, L.H. (1955) The invertebrates: Vol. 4, Echinodermata, McGraw-Hill, New York.Google Scholar
  15. 15.
    Yoshida, M., Takasu, N. and Tamotsu, S. (1984) Photoreception in echinoderms, in M.A. Ali (eds.), Photoreception and vision in invertebrates, Plenum, New York, pp. 743–771.Google Scholar
  16. 16.
    Millot, N. (1975) The photosensitivity of echinoids, Adv. Mar. Biol. 13, 1–52.Google Scholar
  17. 17.
    Hendler, G. and Byrne, M. (1987) Fine structure of the dorsal arm plate of Ophiocoma wendti: Evidence for a photoreceptor system (Echinodermata, Ophiuroidea), Zoomorphology 107, 261–272.CrossRefGoogle Scholar
  18. 18.
    Hendler, G. (1984) Brittlestar color-change and phototaxis (Echinodermata: Ophiuroidea: Ophiocomidae), PSZNI Mar. Ecol. 5, 379–401.Google Scholar
  19. 19.
    Cowles, R.P. (1910) Stimuli produced by light and by contact with solid walls as factors in the behavior of ophiuroids, J. Exp. Zool. 9, 387–416.CrossRefGoogle Scholar
  20. 20.
    Donnay, G. and Pawson, D.L. (1969) X-ray diffraction studies of echinoderm plates, Science 166, 1147–1150.Google Scholar
  21. 21.
    Ameye, L., Hermann, R., Wilt, F. and Dubois, P. (1999) Ultrastructural localization of proteins involved in sea urchin biomineralization, J. Histochem. Cytochem. 47, 1189–1200.Google Scholar
  22. 22.
    Flint, H.T. (1936) Geometrical optics, Methuen and Co, London.Google Scholar
  23. 23.
    Clarkson, E.N.K. and Levi-Setti, R. (1975) Trilobite eyes and the optics of Des Cartes and Huygens, Nature 254, 663–667.CrossRefGoogle Scholar
  24. 24.
    Gal, J., Horvath, G., Clarkson, E.N.K. and Haiman, O. (2000) Image formation by bifocal lenses in a trilobite eye?, Vision Res. 40, 843–853.Google Scholar
  25. 25.
    Towe, K.M. (1973) Trilobite eyes: Calcified lenses in vivo, Science 179, 1007–1010.Google Scholar
  26. 26.
    Land, M.F. (1981) Optics and vision in invertebrates, in H. Autrum (eds.), Comparative physiology and evolution in invertebrates B: Invertebrate visual centers and behavior I, Springer, Berlin, pp. 471–592.Google Scholar
  27. 27.
    Cobb, J.L.S. and Hendler, G. (1990) Neurophysiological characterization of the photoreceptor system in a brittlestar, Ophiocoma wendtii (Echinodermata: Ophiuroidea), Comp. Biochem. Physiol. 97A, 329–333.Google Scholar
  28. 28.
    Stubbs, T.R. (1982) The neurophysiology of photosensitivity in ophiuroids, in J.M. Lawrence (eds.), Echinoderms: Proceedings of the International Conference, Tampa Bay, Balkema, Rotterdam, pp. 403–408.Google Scholar
  29. 29.
    Johnsen, S. (1997) Identification and localization of a possible rhodopsin in the echinoderms Asterias forbesi (Asteroidea) and Ophioderma brevispinum (Ophiuroidea), Biol. Bull. 193, 97–105.Google Scholar
  30. 30.
    Berman, A., Addadi, L., Kvick, Å., Leiserowitz, L., Nelson, M. & Weiner, S. (1990) Intercalation of sea urchin proteins in calcite: Study of a crystalline composite material, Science 250, 664–667.Google Scholar
  31. 31.
    Addadi, L., Aizenberg, J., Albeck, S., Berman, A., Leiserowitz, L. & Weiner, S. (1994) Controlled occlusion of proteins — a tool for modulating the properties of skeletal elements, Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A-Mol. Cryst. Liq. Cryst. 248, 185–198.Google Scholar
  32. 32.
    Albeck, S., Aizenberg, J., Addadi, L. & Weiner, S. (1993) Interactions of various skeletal intracrystalline components with calcite crystals, J. Am. Chem. Soc. 115, 11691–11697.CrossRefGoogle Scholar
  33. 33.
    Gonis, A. (2000) Nucleation and Growth Processes in Materials, Materials Research Society, Boston.Google Scholar
  34. 34.
    Vere, A.W. (1988) Crystal Growth: Principles and Progress, Plenum, New York.Google Scholar
  35. 35.
    Beniash, E., Aizenberg, J., Addadi, L. and Weiner, S. (1997) Amorphous calcium carbonate transforms into calcite during sea urchin larval spicule growth, Proc. R. Soc. Lond. Ser. B-Biol. Sci. 264, 461–465.Google Scholar
  36. 36.
    Beniash, E., Addadi, L. and Weiner, S. (1999) Cellular control over spicule formation in sea urchin embryos: A structural approach, J. Struct. Biol. 125, 50–62.CrossRefGoogle Scholar
  37. 37.
    Aizenberg, J., Hanson, J., Koetzle, T.F., Leiserowitz, L., Weiner, S. & Addadi, L. (1995) Biologically induced reduction in symmetry — a study of crystal texture of calcitic sponge spicules, Chem.-Eur. J. 1, 414–422.Google Scholar
  38. 38.
    Aizenberg, J., Black, A.J. and Whitesides, G.M. (1999) Oriented growth of calcite controlled by self-assembled monolayers of functionalized alkanethiols supported on gold and silver, J. Am. Chem. Soc. 121, 4500–4509.CrossRefGoogle Scholar
  39. 39.
    Han, Y.-J. and Aizenberg, J. (2003) Face-selective nucleation of calcite on self-assembled monolayers of alkanethiols: Effect of the parity of the alkyl chain, Angew. Chem. Int. Ed. 42, 3668–3670.Google Scholar
  40. 40.
    Xia, Y.N. and Whitesides, G.M. (1998) Soft lithography, Annu. Rev. Mater. Sci. 28, 153–184.CrossRefGoogle Scholar
  41. 41.
    Koga, N., Nakagoe, Y.Z. and Tanaka, H. (1998) Crystallization of amorphous calcium carbonate, Thermochim. Acta 318, 239–244.CrossRefGoogle Scholar
  42. 42.
    Gower, L.B. and Odom, D.J. (2000) Deposition of calcium carbonate films by a polymer-induced liquid-precursor (PILP) process, J. Cryst. Growth 210, 719–734.CrossRefGoogle Scholar
  43. 43.
    Raz, S., Weiner, S. and Addadi, L. (2000) Formation of high-magnesian calcites via an amorphous precursor phase: Possible biological implications, Adv. Mater. 12, 38–41.Google Scholar
  44. 44.
    Sawada, K. (1997) The mechanisms of crystallization and transformation of calcium carbonates, Pure Appl. Chem. 69, 921–928.MathSciNetGoogle Scholar
  45. 45.
    Aizenberg, J., Lambert, G., Addadi, L. and Weiner, S. (1996) Stabilization of amorphous calcium carbonate by specialized macromolecules in biological and synthetic precipitates, Adv. Mater. 8, 222–225.CrossRefGoogle Scholar
  46. 46.
    Aizenberg, J., Lambert, G., Weiner, S. and Addadi, L. (2002) Factors involved in the formation of amorphous and crystalline calcium carbonate: A study of an ascidian skeleton, J. Am. Chem. Soc. 124, 32–39.CrossRefGoogle Scholar
  47. 47.
    Aizenberg, J., Muller, D.A., Grazul, J.L. and Hamann, D.R. (2003) Direct fabrication of large micropatterned single crystals, Science 299, 1205–1208.CrossRefGoogle Scholar
  48. 48.
    Yang, S., Megens, M. and Aizenberg, J. (2003) Fabrication of biomimetic microlens arrays with integrated pores by interference lithography, Unpublished data.Google Scholar
  49. 49.
    Campbell, M., Sharp, D.N., Harrison, M.T., Denning, R.G. and Turberfield, A.J. (2000) Nature 404, 53–55.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • J. Aizenberg
    • 1
  • G. Hendler
    • 2
  1. 1.Bell Laboratories/Lucent TechnologiesMurray HillUSA
  2. 2.Natural History Museum of Los Angeles CountyLos AngelesUSA

Personalised recommendations