Skip to main content

Calcium Phosphate Biomaterials: An Overview

  • Conference paper

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 171))

Abstract

Calcium phosphates are used by our body to build bones and are being applied to produce biomaterials for bone repair. It is well-known that calcium phosphate biomaterials guide new bone formation, form a tight bond with the newly formed bone, and are therefore, by definition, osteoconductive. Besides their osteoconductive property, it was found that calcium phosphate biomaterials, only with specific physicochemical properties, induce bone formation in non-osseous sites and therefore are osteoinductive. A summary of calcium phosphate biomaterials from osteoconduction to osteoinduction is given in this overview.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bloom, W. and Fawcettt, D.W. (1986) A textbook of histology, W. B. Saunders, Philadelphia, pp. 199–238.

    Google Scholar 

  2. Rosenberg, A. (1999) Bones, joints, and soft tissue tumors, in R.S. Cotran, V. Kumar and T. Collins (eds) Robins pathological basis of disease, W. B. Saunders, Philadelphia, pp. 1215–1268.

    Google Scholar 

  3. Damien, C.J. and Parsons, J.R. (1991) Bone graft and bone graft substitutes: A review of current technology and application, J.Appl.Biomat. 2, 187–208.

    Google Scholar 

  4. Hollinger, J.O., Brekke, J., Gruskin, E, and Lee, D. (1996) Role of bone substitutes, Clin.Orthop. 324, 55–65.

    Google Scholar 

  5. Perry, C.R. (1999) Bone repair techniques, bone graft, and bone graft substitutes, Clin.Orthop. 360, 71–86.

    Google Scholar 

  6. Betz, R.R. (2002) Limitations of autograft and allograft: new synthetic solutions, Orthopedics 25, s561–570.

    Google Scholar 

  7. Parikh, S.N. (2002) Bone graft substitutes: past, present, future, J. Postgrad. Med. 48, 142–8.

    Google Scholar 

  8. McAuliffe, J.A. (2003) Bone graft substitutes, J. Hand Ther. 16, 80–187.

    Article  Google Scholar 

  9. Costantino, P.D., Hiltzik, D., Govindaraj, S. and Moche, J. (2002) Bone healing and bone substitutes, Facial Plast. Surg. 18, 13–26.

    Article  Google Scholar 

  10. Sammarco, V.J. and Chang, L. (2002) Modern issues in bone graft substitutes and advances in bone tissue technology, Foot Ankle Clin. 7, 19–41.

    Article  Google Scholar 

  11. Bucholz, R.W,. (2002) Nonallograft osteoconductive bone graft substitutes, Clin. Orthop. 395, 44–52

    Google Scholar 

  12. Hench, L.L. (1980) Biomaterials, Science 208, 826–831.

    Google Scholar 

  13. Jarcho, M. (1981) Calcium phosphate ceramics as hard tissue prosthetics, Clin.Orthop. 157, 259–278.

    Google Scholar 

  14. Hench, L.L. and Wilson, J. (1984) Surface-active biomaterials, Science 226, 630–635.

    Google Scholar 

  15. de Groot K. (1984) Calcium phosphate ceramics: their current status, in J.W. Boretos, and M. Eden (eds), Contemporary Biomaterials. Noyes Publications, USA, pp. 477–492.

    Google Scholar 

  16. Daculsi, G. and Passuti, N. (1989) Bioactive ceramics, fundamental properties and clinical applications: the osteo-coalescence process, Bioceramics 2, 3–10.

    Google Scholar 

  17. Osborn, J.F. (1991) The biological profile of hydroxyapatite ceramic with respect to the cellular dynamics of animal and human soft tissue and mineralized tissue under unloaded and loaded conditions, in M.A. Barbosa (eds), Biomaterials Degradation, Elsevier, Amsterdam, pp. 185–225.

    Google Scholar 

  18. Daculsi, G. (1998) Biphasic calcium phosphate concept applied to artificial bone, implant coating and injectable bone substitute, Biomaterials 19, 1473–1478.

    Article  Google Scholar 

  19. Szpalski, M., and Gunzburg, R. (2002) Applications of calcium phosphate-based cancellous bone void fillers in trauma surgery, Orthopedics 25, s601–609.

    Google Scholar 

  20. Metseger, D.S. and Driskell, T.D. (1982) Tricalcium phosphate ceramic, a resorbable bone implant: Review and current status, J. Am. Dent.Assoc. 105, 1035–1044.

    Google Scholar 

  21. Nakamura, T., Yamamura, T., Higashi, S., Kokubo, T. and Itoo, S. (1985) A new glass-ceramic for bone replacement: Evaluation of its bonding to bone tissue, J. Biomed. Mater. Res. 19, 685–698.

    Article  Google Scholar 

  22. El-Ghannam, A., Ducheyne, P. and Shapiro, I.M. (1997) Formation of surface reaction products on bioactive glass and their effects on the expression of osteoblastic phenotype and the deposition of mineralized extracellular matrix, Biomaterials 18, 295–303.

    Google Scholar 

  23. Kokubo, T., Kim, H.M. and Kawashita, M. (2003) Novel bioactive materials with different mechanical properties, Biomaterials 24, 2161–2175.

    Google Scholar 

  24. Ginebra, M.P., Fernandez, E., Boltong, M.G., Planell, J.A., Bermudez, O. and Driessens, F.C.M. (1994) Compliance of a calcium phosphate cement with some short-term clinical requirement, Bioceramics 6, 273–278.

    Google Scholar 

  25. Miyamoto, Y., Ishikawa, K., Fukao, H., Sawada, M., Nagayama, M., Kon, M. and Asaoka, K. (1995) In vivo setting behaviour of fast-setting calcium phosphate cement, Biomaterials 16, 855–860.

    Article  Google Scholar 

  26. Miyamoto, Y., Ishikawa, K., Takechi, M., Yuasa, M., Kon, M., Nagayama, M. and Asaoka, K. (1996) Non-decay type fast-setting calcium phosphate cement: setting behavior in calf serum and its tissue response, Biomaterials 17, 1429–1435.

    Article  Google Scholar 

  27. Constantz, B.R., Barr, B.M., Ison, I.C., Fulmer, M.T., Baker, J., McKinney, L., Goodman, S.B., Gunasekaren, S., Delaney, D.C., Ross, J. and Poser, R.D. (1998) Histological, chemical, and crystallographic analysis of four calcium phosphate cements in different rabbit osseous sites, J. Biomed. Mater. Res. 43, 451–461.

    Article  Google Scholar 

  28. Yuan, H., Li, Y., de Bruijn, J.D., de Groot, K. and Zhang, X. (2000) Tissue responses of calcium phosphate bone cement: A study in dogs, Biomaterials 21, 1283–1290.

    Article  Google Scholar 

  29. de Groot, K., Geesink, R., Klein, CPAT and Serekian, P. (1987) Plasma sprayed coatings of hydroxyapatite, J. Biomed. Mater. Res. 21, 1375–1381.

    Google Scholar 

  30. Cook, S.D., Thomas, K.A., Kay, J.F. and Jarcho, M. (1988) Hydroxyapatite-coated porous Titanium for use as an orthopedic biologic attachment system, Clin.Orthop. 230, 303–311.

    Google Scholar 

  31. Vercaigne, S., Wolke, J.G.C., Naert, I. And Jansen, J.A. (1998) Bone healing capacity of titanium plasma-sprayed and hydroxyapatite-coated oral implants, Clin. Oral implants Res. 9, 261–271.

    Article  Google Scholar 

  32. Lacefield, W.R. (1998) Current status of ceramic coatings for dental implants, Implant Dent. 7, 315–322.

    Google Scholar 

  33. Abe, Y., Kokubo, T. and Yamamura, T. (1990) Apatite coating on ceramics, metals and polymers utilizing a biological process, J.Mater.Sci: Mater.Med 1, 233–238.

    Article  Google Scholar 

  34. Leitao, E., Barbosa, M.A. and de Groot, K. (1995) In vitro calcification of orthopaedic implant materials, J. Mater. Sci: Mater. Med 5, 849–852.

    Google Scholar 

  35. Wen, H.B., de Wijn, J.R,. van Blitterswijk, C.A. and de Groot, K. (1999) Incorporation of bovine serum albumin in calcium phosphate coating on titanium, J. Biomed. Mater. Res. 46, 245–252.

    Article  Google Scholar 

  36. Liu, Y., Hunziker, E.B., Layrolle, P. and de Groot, K. (2002) Introduction of ectopic bone formation by BMP-2 incorporated into calcium phosphate coatings of Titanium-Alloy implants, Bioceramics 15, 667–670.

    Google Scholar 

  37. Fujibayashi, S., Nakamura, T., Nishiguchi, S., Tamura, J., Uchida, M. and Kim, H.M. (2001) Kokubo T, Bioactive titanium: effect of sodium removal on the bone-bonding ability of bioactive titanium prepared by alkali and heat treatment, J. Biomed. Mater. Res. 56, 562–570.

    Article  Google Scholar 

  38. Zardiackas, L.D., Teasdall, R.D., Black, R.J., Jones, J.S., St.John, R., Dillion, L.D. and Hughes, J.L. (1994) Torsional properties of healed canine diaphyseal defects grafted with a fibrillar collagen and hydroxyapatite/tricalcium phosphate composite, J. Appli. Biomater. 5, 277–283.

    Google Scholar 

  39. John, R.K., Zardiackas, L.D., Terry, R.C., Teasdall, R.D. and Cooke, S.E. (1995) Histological and electron microscopic analysis of tissue response to synthetic composite bone graft in the canine, J. Appl. Biomater. 6, 89–97.

    Article  Google Scholar 

  40. Lawson, A.C. and Czernuszka, J.T. (1998) Collagen-calcium phosphate composite, Proc. Inst. Mech. Eng. 212, 413–425.

    Article  Google Scholar 

  41. Muzzarelli, C. and Muzzarelli, R.A. (2002) Natural and artificial chitosan-inorganic composites, J. Inorg. Biochem. 92, 89–94.

    Article  Google Scholar 

  42. Roy, I., Mitra, S., Maitra, A. and Mozumdar, S. (2003) Calcium phosphate nanoparticles as novel non-viral vectors for targeted gene delivery, Int. J. Pharm. 250, 25–33.

    Article  Google Scholar 

  43. Forster, S. and Plantenberg, T. (2002) From self-organizing polymers to nanohybrid and biomaterials, Angew Chem. Int. Ed. Engl. 41, 689–714.

    Article  Google Scholar 

  44. Urist, M.R. (1965) Bone: formation by autoinduction, Science 150, 893–899.

    Google Scholar 

  45. Urist, M.R., Huo, Y.K. and Brownell, A.G. (1984) Purification of bovine bone morphogenetic protein by hydroxyapatite chromatography, Proc.Natl.Acad.Sci.USA 81, 371–375.

    Google Scholar 

  46. Yamasaki, H. (1990) Heterotopic bone formation around porous hydroxyapatite ceramics in the subcutis of dogs, Jpan. J. Oral Biol. 32, 190–192.

    Google Scholar 

  47. Ripamonti, U. (1991) The morphogenesis of bone in replicas of porous hydroxyapatite obtained from conversion of calcium carbonate exoskeletons of coral, J. Bone & Joint Surg. 73A, 692–703.

    Google Scholar 

  48. Zhang, X. (1991) A study of porous block HA ceramics and its osteogenesis, in A. Ravaglioli and A. Krajewski (eds), Bioceramics and the Human Body, Elsevier Science, Amsterdam, pp. 408–415.

    Google Scholar 

  49. Vargervik K. (1992) Critical sites for new bone formation, In M.B. Habal and A.H. Reddi (eds), Bone grafts & bone substitutes, W.B. Saunders, Philadelphia, pp. 112–120.

    Google Scholar 

  50. Yamasaki, H. and Saki, H. (1992) Osteogenic response to porous hydroxyapatite ceramics under the skin of dogs, Biomaterials 13, 308–312.

    Article  Google Scholar 

  51. Toth, J.M., Lynch, K.L. and Hackbarth, D.A. (1993) Ceramic-induced osteogenesis following subcutaneous implantation of calcium phosphates, Bioceramics 6, 9–13.

    Google Scholar 

  52. Klein, CPAT, de Groot, K., Chen, W., Li, Y. and Zhang, X. (1994) Osseous substance formation induced in porous calcium phosphate ceramics in soft tissues, Biomaterials 15, 31–34.

    Google Scholar 

  53. Green, J.P., Wojno, T.H., Wilson, M.W. and Grossniklaus, H.E. (1995) Bone formation in hydroxyapatite orbital implants, Am. J. Ophthalmol. 120, 681–682.

    Google Scholar 

  54. Ripamonti, U. (1996) Osteoinduction in porous hydroxyapatite implanted in heterotopic sites of different animal models, Biomaterials 17, 31–35.

    Article  Google Scholar 

  55. Yang, Z., Yuan, H., Tong, W., Zou, P., Chen, W. and Zhang, X. (1996) Osteogenesis in extraskeletally implanted porous calcium phosphate ceramics:variability among different kinds of animals, Biomaterials 17, 2131–2137.

    Article  Google Scholar 

  56. Yang, Z., Yuan, H., Zou, P., Tong, W., Qu, S. and Zhang, X. (1997) Osteogenic responses to extraskeletally implanted synthetic porous calcium phosphate ceramics: an early stage histomorphological study in dogs. J. Mater. Sci: Mater. Med. 8, 697–701.

    Article  Google Scholar 

  57. Sires, B.S., Holds, J.B., Kincaid, M.C. and Reddi, A.H. (1997) Osteogenin-enhanced bone-specific differentiation in hydroxyapatite orbital implants, Ophthal. Plast. Reconstr. Surg. 13, 244–251

    Google Scholar 

  58. Yuan, H., Yang, Z., Li, Y., Zhang, X., de Bruijn, J.D. and de Groot, K. (1998) Osteoinduction by calcium phosphate biomaterials, J. Mater. Sci: Mater. Med. 9, 723–726.

    Google Scholar 

  59. de Bruijn, J.D., Dalmeijer, R. and de Groot, K. (1999) Osteoinduction by microstructured calcium phosphates, Transaction of 25th Annual meeting of Society for Biomaterials, RI, USA, p235.

    Google Scholar 

  60. Yuan, H., Kurashina, K., de Bruijn, J.D., Li, Y., de Groot, K. and Zhang, X. (1999) A preliminary study on osteoinduction of two kinds of calcium phosphate ceramics, Biomaterials 20, 1799–1806.

    Article  Google Scholar 

  61. Ripamonti, U., Crooks, J. and Kirkbride, A.N. (1999) Sintered porous hydroxyapatite with intrinsic osteoinductive activity: geometric induction of bone formation, South African Journal of Science 95, 335–343.

    Google Scholar 

  62. de Bruijn, J.D., Yuan, H., Dekker, R. and van Blitterswijk, C.A. (2000) Osteoinduction by biomimetic calcium phosphate coatings and their potential use as tissue engineering scaffolds. in J. E. Davies (eds), Bone engineering, em squared incorporated, Toronto, pp. 421–431.

    Google Scholar 

  63. Yuan. H., de Bruijn, J.D., Li, Y., Feng, J., Yang, Z., de Groot, K. and Zhang, X. (2001) Bone formation induced by calcium phosphate ceramics in soft tissue of dogs: A comparative study between α-TCP and β-TCP, J. Mater. Sci: Mater. Med. 12, 7–13.

    Google Scholar 

  64. Yuan, H., Yang, Z., de Bruijn, J.D., de Groot, K. and Zhang, X. (2001) Material-dependent bone induction by calcium phosphate ceramics: A 2.5-year study in dog, Biomaterials 22, 2617–2623.

    Article  Google Scholar 

  65. Yuan, H., de Bruijn, J.D., Zhang, X., van Blitterswijk, C.A. and de Groot, K. (2001) Bone induction by porous glass ceramic made from Bioglass (45S5), J. Appl. Biomat. 58, 270–276.

    Google Scholar 

  66. Yuan, H., de Bruijn, J.D., van Blitterswijk, C.A. and de Groot, K. (2001) Bone induction by a calcium phosphate ceramic in rabbits. Transaction of 27th Annual meeting of society for biomaterials, Minnesota, USA, pp. 142.

    Google Scholar 

  67. Gosain, A.K., Song, L., Riordan, P., Amarante, M.T., Nagy, P.G., Wilson, C.R., Toth, J.M., and Ricci, L. (2002) A 1-year study of osteoinduction in hydroxyapatite-derived biomaterials in an adult sheep model: part I, Plastic and Reconstructuve Surgery 109, 619–630.

    Google Scholar 

  68. Kurashina, K., Kurita, H., Wu, Q., Ohtsuka, A., and Kobayashi, H. (2002) Ectopic ostepgenesis with biphasic ceramics of hydroxyapatite and tricalcium phosphate in rabbits, Biomaterials 23, 407–412.

    Article  Google Scholar 

  69. Yuan, H., van den Doel, M., van Blitterswijk, C.A., de Groot, K. And de Bruijn, J.D. (2002) A comparison of bone induction by two kinds of calcium phosphate ceramics in goats, J. Mater. Sci: Mater. Med. 13, 1271–1275.

    Article  Google Scholar 

  70. Yuan, H., de Bruijn, J.D., van Blitterswijk, C.A. and de Groot, K. (2002) Time course of bone induction by an osteoinductive biomaterial, Transaction of 28th Annual meeting of Society for Biomaterials, Tampa, Florida, USA, pp. 706.

    Google Scholar 

  71. Winter, G.D. and Simpson, B.J. (1969) Heterotopic bone formed in a synthetic sponge in the skin of young pigs, Nature 223, 88–90

    Google Scholar 

  72. Fujiibayashi, S., Neo, M., Kim, H.M., Kokubo, T., and Nakamura, T. (2003) Osteoinduction of porous bioactive titanium metal, Biomaterials, (in press).

    Google Scholar 

  73. Yuan, H., Van den Doel, M., van Blitterswijk, C. A., de Groot, K. and de Bruijn, J.D. (2002) A comparison of two kinds of calcium phosphate ceramics as bone tissue engineering scaffold in goats, Transaction of 17th meeting of European Society for Biomaterials, Barcelona, Spain, T159.

    Google Scholar 

  74. Yuan, H., de Bruijn, J.D., van Blitterswijk, C.A. and de Groot, K. (2002) Osteoinductive biomaterials and bone repairs, Transaction of 17th meeting of European Society for Biomaterials, Barcelona, Spain, Barcelona, Spain, pp. 156.

    Google Scholar 

  75. Yuan, H., Kruyt, M., van den Doel, M., van Blitterswijk, C.A., de Groot, K. and de Buijn, J.D. (2004) Repair of a critical size bone defect in goat with an osteoinductive calcium phosphate ceramic, The 7th World Biomaterials Conference, Sydney, Australia. Submitted.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this paper

Cite this paper

Yuan, H., de Groot, K. (2004). Calcium Phosphate Biomaterials: An Overview. In: Reis, R.L., Weiner, S. (eds) Learning from Nature How to Design New Implantable Biomaterialsis: From Biomineralization Fundamentals to Biomimetic Materials and Processing Routes. NATO Science Series II: Mathematics, Physics and Chemistry, vol 171. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2648-X_3

Download citation

Publish with us

Policies and ethics