Skip to main content

The Geometry of Density States, Positive Maps and Tomograms

  • Conference paper
Symmetries in Science XI
  • 594 Accesses

Abstract

The positive and not completely positive maps of density matrices, which are contractive maps, are discussed as elements of a semigroup. A new kind of positive map (the purification map), which is nonlinear map, is introduced. The density matrices are considered as vectors, linear maps among matrices are represented by superoperators given in the form of higher dimensional matrices. Probability representation of spin states (spin tomography) is reviewed and U(N)-tomogram of spin states is presented. Properties of the tomograms as probability distribution functions are studied. Notion of tomographic purity of spin states is introduced. Entanglement and separability of density matrices are expressed in terms of properties of the tomographic joint probability distributions of random spin projections which depend also on unitary group parameters. A new positivity criterion for hermitian matrices is formulated. An entanglement criterion is given in terms of a function depending on unitary group paramete rs and semigroup of positive map parameters. The function is constructed as sum of moduli of U(N)- tomographic symbols of the hermitian matrix obtained after action on the density matrix of composite system by a positive but not completely positive map of the subsystem density matrix. Some two-qubit and two-qutritt states are considered as examples of entangled states. The connection with the star-product quantisation is discussed. The structure of the set of density matrices and their relation to unitary group and Lie algebra of the unitary group are studied. Nonlinear quantum evolution of state vector obtained by means of applying purification rule of density matrices evolving via dynamical maps is considered. Some connection of positive maps and entanglement with random matrices is discussed and used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.A.M. Dirac 1958 “The Principles of Quantum Mechanics” (Oxford: Pergamon)

    MATH  Google Scholar 

  2. L.D. Landau 1927 Z. Phys 45 430

    Article  MATH  ADS  Google Scholar 

  3. J. von Neumann 1932 “Mathematische Grudlagen der Quantenmechanik” (Berlin: Springer); Nov. 1927 Göttingenische Nachrichten 11 S245

    Google Scholar 

  4. E. Schrödinger 1935 Naturwissenschaften 23 807; 823; 844

    Article  MATH  ADS  Google Scholar 

  5. E. Schrödinger 1926 Ann. d. Phys. Lpz 79 489

    Article  MATH  Google Scholar 

  6. V.I. Man’ko, G. Marmo, E.C.G. Sudarshan and F. Zaccaria 1999 J. Russ. Laser Res. 20 421; 2002 J. Phys. A: Math. Gen. 35 7173

    Google Scholar 

  7. M. Horodecki, P. Horodecki and R. Horodecki 1996 Phys. Lett. A 223 1

    MathSciNet  ADS  Google Scholar 

  8. S. Hill and W.K. Wootters 1997 Phys. Rev. Lett. 78 5022 W.K.Wootters 1998 Phys. Rev. Lett. 80 2245

    Article  ADS  Google Scholar 

  9. K. Zyczkowski, P. Horodecki, A. Sanpera and M. Lewenstein 1998 Phys. Rev. A 58 883

    MathSciNet  ADS  Google Scholar 

  10. S. Popescu and D. Rohrlich 1997 Phys. Rev. A 56 R3319

    MathSciNet  ADS  Google Scholar 

  11. S. Abe and A.K. Rajagopal 2002 Physica A 289 157

    MathSciNet  ADS  Google Scholar 

  12. C.H. Bennett, D.P. Di Vincenzo, J.A. Smolin and W.L. Wootters 1996 Phys. Rev. A 54 3824

    ADS  Google Scholar 

  13. R. Simon 2002 Phys. Rev. Lett. 84 2726

    Article  ADS  Google Scholar 

  14. S.M. Barnett and S.J.D. Phoenix 1989 Phys. Rev. A 40 2404; 1991 ibid 44 535

    Article  MathSciNet  ADS  Google Scholar 

  15. A. Mann, B.C. Sanders and W.J. Munro 1995 Phys. Rev. A 51 989

    Article  ADS  Google Scholar 

  16. C.H. Bennet, H.J. Bernstein, S. Popescu and B. Schumacher 1996 Phys. Rev. A 53 2046

    Article  ADS  Google Scholar 

  17. V. Vedral and M.B. Plenio 1998 Phys. Rev. A 57 1619

    Article  ADS  Google Scholar 

  18. B.-G. Englert, M. Löffler, O. Benson, B. Varcoe, M. Weidinger and H. Walter 1998 Fortschr. Phys. 46 897

    Article  ADS  Google Scholar 

  19. M. Horodecki, P. Horodecki and R. Horodecki 2000 Phys. Rev. Lett. 84 2014

    Article  MathSciNet  ADS  Google Scholar 

  20. S. Parker, S. Bose and M.B. Plenio 2000 Phys. Rev. A 61 032305

    Google Scholar 

  21. C.H. Bennet, S. Popescu, D. Rohrlich, J.A. Smolin and A.V. Thapliyal 2001 Phys. Rev. A 63 012307

    Google Scholar 

  22. K. PiÊtek and W. Leoński 2001 J. Phys. A: Math. Gen. 34 4951

    Article  ADS  Google Scholar 

  23. K. Audenaert, J. Esert, E. Jané, M.B. Plenio, S. Virmani and R.B. De Moor 2001 Phys. Rev. Lett. 87 217902

    Google Scholar 

  24. K. Furuya, M.C. Nemes and G.Q. Pellegrino 1998 Phys. Rev. Lett. 80 5524

    Article  ADS  Google Scholar 

  25. K. Žyczkowski, P. Horofecki, A. Savpera and M. Lewenstein 1998 Phys. Rev. A 58 883

    Article  MathSciNet  Google Scholar 

  26. W.J. Munro, D.F.V. James, A.G. White and P.G. Kwait 2001 Phys. Rev. A 64 030302

    Google Scholar 

  27. G Vidal and R.F. Werner 2002 Phys. Rev. A 65 032314

    Google Scholar 

  28. F. Coffman, J. Kundu and W.K. Wootters 2000 Phys. Rev. A 61 052306

    Google Scholar 

  29. P. Badziag, P. Deuar, M. Horodecki, P. Horodecki and R. Horodecki 2002 J. Mod. Opt. 49 1289

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. M.A. Andreata, A.V. Dodonov and V.V. Dodonov 2002 J. Russ. Laser Res. 23 531

    Article  Google Scholar 

  31. V.V. Dodonov and V.I. Man’ko 1997 Phys. Lett. A 229 335

    Article  MathSciNet  MATH  Google Scholar 

  32. O. Man’ko and V.I. Man’ko 1997 JETP 85 430

    Google Scholar 

  33. A.B. Klimov, O.V Man’ko, V.I. Man’ko, Yu. F. Smirnov and V.N. Tolstoy 2002 J. Phys. A: Math. Gen. 35 6101

    Article  ADS  MATH  Google Scholar 

  34. V.A. Andreev and V.I. Man’ko 1998 JETP 87 239

    Article  ADS  Google Scholar 

  35. V.I. Man’ko and S.S. Safonov 1998 Yad. Fiz. 61 658

    Google Scholar 

  36. O.V. Man’ko, V.I. Man’ko and G. Marmo 2000 Phys Scr. 62 446; 2002 J. Phys. A: Math. Gen. 35 699

    Google Scholar 

  37. V.V. Dodonov, A.S.M. De Castro and S.S. Misrahi 2002 Phys. Lett. A 296 73 A.S.M. DeCastro and V.V.Dodonov 2003 J. Russ. Laser Res. 23 93; 2003 J. Opt. B: Quantum Semiclass. Opt. 5 S593

    Article  MathSciNet  MATH  Google Scholar 

  38. Special Issue on Entanglement 2002 J. Math. Phys. 43No. 9

    Google Scholar 

  39. E.C.G. Sudarshan, P.M. Mathews and J. Rau 1961 Phys. Rev. 121 920

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. E.C.G. Sudarshan and A. Shaji 2003 “Structure and parametrization of stochastic maps of density matrix” ArXiv quant-ph/0205051 v2; 2003 J. Phys. A: Math. Gen. 36 (in press)

    Google Scholar 

  41. A. Peres 1996 Phys. Rev. Lett. 77 1413

    Article  MathSciNet  MATH  ADS  Google Scholar 

  42. S. Mancini, V.I. Man’ko and P. Tombesi 1996 Phys. Lett. A 213 1; 1997 Found. Phys. 27 801

    Article  MathSciNet  MATH  Google Scholar 

  43. J. Bertrand and P. Bertrand 1987 Found. Phys. 17 397

    Article  MathSciNet  ADS  Google Scholar 

  44. K. Vogel and H. Risken 1989 Phys. Rev. A 40 2847

    Article  ADS  Google Scholar 

  45. S. Mancini, V.I. Man’ko and P. Tombesi 1995 Quantum Semiclass. Opt. 7 615 G.M.D’Ariano, S.Mancini, V.I.Man’ko and P.Tombesi dy1996 Quantum Semiclass. Opt. 8 1017

    Article  ADS  Google Scholar 

  46. M.A. Man’ko, V.I. Man’ko and R.V Mendes 2001 J. Phys. A: Math. Gen. 24 8321

    Google Scholar 

  47. V.I. Man’ko, G. Marmo, E.C.G. Sudarshan and F. Zaccaria 2003 “Entanglement in probability representation of quantum states and tomographic criterion of separability” J. Opt. B: Quantum Semiclass. Opt. (in press); 2003 J. Russ. Laser Res. 24 507

    Google Scholar 

  48. V.I. Man’ko, G. Marmo, E.C.G. Sudarshan and F. Zaccaria 2000 “Inner composition law of pure-spin states” in “Spin-Statistics Connection and Commutation Relations” R.C. Hilborn and G.M. Tino (eds.) AIP Conference Proceedings 545 92

    Google Scholar 

  49. A.S. Holevo 1999 Russ. Math. Surveys 53 1295

    Article  ADS  Google Scholar 

  50. P.W. Shor 2002 J. Math. Phys. 43 4334

    Article  MathSciNet  MATH  ADS  Google Scholar 

  51. E. Schrödinger 1935 Proc. Cambridge Philos. Soc. 31 555

    Article  MATH  Google Scholar 

  52. P.B. Slater 2003 J. Opt. B: Quantum Semiclass. Opt. 5 S691

    Article  Google Scholar 

  53. S.V. Kuznetsov, O.V. Man’ko and N.V. Tcherniega 2003 J. Opt. B: Quantum Semiclass. Opt. 6 S503

    Article  Google Scholar 

  54. W.F. Stinespring 1955 Proc. Amer. Math. Soc. 6 211

    MathSciNet  MATH  Google Scholar 

  55. L.C. Woronowicz 1976 Rep. Math. Phys. 10 165

    Article  MathSciNet  MATH  ADS  Google Scholar 

  56. F. Bayen, M. Flato, C. Fronsdal, A. Lichnerovicz and D. Sternheimer 1975 Lett. Math. Phys. 1 521

    Article  MathSciNet  ADS  Google Scholar 

  57. C. King 2002 “The capacity of the quantum depolarizing channel” ArXiv quantph/0204172 v2

    Google Scholar 

  58. J.E. Moyal 1949 Proc. Cambridge Philos. Soc. 45 99

    Article  MathSciNet  MATH  Google Scholar 

  59. A. Kossakovski 1972 Rep. Math. Phys. 3 247

    Article  ADS  Google Scholar 

  60. G. Lindblad 1976 Comm. Math. Phys. 48 119

    Article  MathSciNet  MATH  ADS  Google Scholar 

  61. V. Gorini, A. Kossakovski and E.C.G. Sudarshan 1978 Rep. Math. Phys. 18 149

    Article  Google Scholar 

  62. K. Kraus 1973 Ann. Phys. NY 64 311

    MathSciNet  ADS  Google Scholar 

  63. M.D. Choi 1975 Lin. Alg. Appl. 10 285; 1970 Canadian J. Math. 24 520; 1976 Illinois J. Math. 48 119

    Article  MATH  Google Scholar 

  64. T.F. Havel 2003 J. Math. Phys. 44 534

    Article  MathSciNet  MATH  ADS  Google Scholar 

  65. E.C.G. Sudarshan 1963 Phys. Rev. Lett. 10 277 C.L.Mehta and E.C.G.Sudarshan 1965 Phys. Rev. B 138 274

    Article  MathSciNet  MATH  ADS  Google Scholar 

  66. R. Werner 1989 Phys. Rev. A 40 4277

    Article  ADS  Google Scholar 

  67. A. Kossakowski 2003 “A class of linear positive maps in matrix algebras” ArXiv quantph/0307132 v1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this paper

Cite this paper

Man’ko, V.I., Marmo, G., Sudarshan, E.C.G., Zaccaria, F. (2004). The Geometry of Density States, Positive Maps and Tomograms. In: Gruber, B.J., Marmo, G., Yoshinaga, N. (eds) Symmetries in Science XI. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2634-X_19

Download citation

Publish with us

Policies and ethics