Tensor and Spin Representations of SO(4) and Discrete Quantum Gravity

  • M. Lorente
  • P. Kramer


Starting from the defining transformations of complex matrices for the SO(4) group, we construct the fundamental representation and the tensor and spinor representations of the group SO(4). Given the commutation relations for the corresponding algebra, the unitary representations of the group in terms of the generalized Euler angles are constructed. These mathematical results help us to a more complete description of the Barret-Crane model in Quantum Gravity. In particular a complete realization of the weight function for the partition function is given and a new geometrical interpretation of the asymptotic limit for the Regge action is presented.


SO(4) group tensor representation spin representation quantum gravity spin networks 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Lorente, M. “Basis for a discrete special relativity”. Int. J. Theor. Phys., 15:927–947, 1976. Lorente, M. “A new scheme for the Klein-Gordon and Dirac Fields on the lattice with Axial Anomaly”. Int. J. Group Theor. in Phys., 1:105–121, 1993. Lorente M. and P. Kramer. “Representations of the discrete inhomogeneous Lorentz group and Dirac wave equation on the lattice”. J. Phys. A, Math. Gen., 32:2481–2497, 1999.CrossRefMathSciNetGoogle Scholar
  2. [2]
    Regge, T. “General Relativity without coordinates”. Il Nuovo Cimento, 19:558–571, 1961.MathSciNetCrossRefGoogle Scholar
  3. [3]
    Ponzano, G. and T. Regge. “Semiclassical limit of Racah coefficients”. In Spectroscopy and group theoretical methods in Physics (F. Bloch et al. ed.), North Holland, Amsterdam, 1968.Google Scholar
  4. [4]
    Penrose, R. “Angular momentum: an approach to combinatorial space-time”. In Quantum theory and Beyond (T. Bastin, ed.), C.U.P. Cambridge, 1971.Google Scholar
  5. [5]
    Hasslacher B. and M. Perry. “Spin networks are simplicial quantum gravity”. Phys. Lett, 103 B:21–24, 1981.MathSciNetGoogle Scholar
  6. [6]
    Turaev V.G. and O. Viro. Topology, 31:865–902, 1992.CrossRefMathSciNetMATHGoogle Scholar
  7. [7]
    Crane, L. and D. Yetter “A categorial construction of 4d-topological quantum field theories”. In Quantum Topology (L. Kaufmann, ed.) World Scientific, Singapore, 1993.Google Scholar
  8. [8]
    Boulatov, D. “A model of three-dimensional lattice gravity”. Mod. Phys. Lett. A, 7:1629–1646, 1992.MATHADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    Ooguri, H. “Topological lattice models in 4-dimensions”. Mod. Phys. Lett. A, 7:2799–2810, 1992.MATHADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    De Pietri, R., L. Freidel, K. Krasnov and C. Rovelli “Barret-Crame model from a Boulatov-Ooguri field theory over a homogeneous space”. Nucl. Phys. B, 574:785–806, 2000. M. Reisenberg, C. Rovelli, “Spin foams as Feynman diagrams”, gr-qc/0002083.ADSMATHCrossRefGoogle Scholar
  11. [11]
    Lorente, M. “Cayley parametrization of semisimple Lie groups and its Application to Physical Laws in a(3+1)-Dimensional Cubic Lattice”. Int. J. Theor. Phys., 11:213–247, 1974.CrossRefMathSciNetGoogle Scholar
  12. [12]
    Nikiforov, A.F., S.K. Suslov and V.B. Uvarov. Classical Orthogonal Polynomials of a Discrete Variable. Springer, Berlin, 1991, p. 271–273.MATHGoogle Scholar
  13. [13]
    Frazer, W.R., F.R. Halpern, H.M. Lipinski and R.S. Snider “O(4) Expansion of Off-Shell Scattering Amplitudes”. Phys. Rev., 176:2047–2053, 1968.ADSCrossRefGoogle Scholar
  14. [14]
    Biedenharn, L.C. “Wigner Coefficients for the R4 Group and Some Appli — cations”. J. Math. Phys., 2:433–441, 1961.MATHCrossRefMathSciNetADSGoogle Scholar
  15. [15]
    Barut, A.O. and R. Wilson “Some new identities of Clebsch-Gordan coefficients and representation functions of SO(2,1) and SO(4)”. J. Math. Phys., 17:900–915,1976.ADSMathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    Barret, J. and L. Crane “Relativistic spin networks and Quantum gravity”. J. Math. Phys., 39:3296, 1998.ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    Barret, J. “The Classical Evaluation of Relativistic Spin Networks”. Adv. Theor. Math, Phys., 2:593–600, 1998.MathSciNetGoogle Scholar
  18. Oriti, D. “Space time geometry from Algebra: spin foam models for non-perturbative quantum gravity”. Rep. Progr. Phys., 64:1489–1544, 2001.ADSMathSciNetGoogle Scholar
  19. [18]
    Barret, J.W. and R.M. Williams. “The asymptotics of an Amplitude for the 4-simplex”.Adv. Theor. Math. Phys., 3:209–215,1999.MathSciNetGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • M. Lorente
    • 1
  • P. Kramer
    • 2
  1. 1.Departamento de FísicaUniversidad de OviedoOviedoSpain
  2. 2.Institut für theoretische PhysikUniversität TübingenTübingenGermany

Personalised recommendations