Skip to main content

Abstract

Physical mechanisms and theoretical models of laser ablation are discussed in this chapter. Among the basic models we present the surface vaporization model, bulk models for polymer ablation, e.g., photothermal and photochemical, photophysical ablation model and a two-temperature model for subpicosecond ablation of metals. For various mechanisms typical associated phenomena are qualitatively analyzed and methods for studying them quantitatively considered. Calculations of ablation kinetics for various materials are presented and compared with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. C. Paine and J. C. Bravman (Eds.), Laser Ablation for Material Synthesis, MRS Symp. Proc., vol. 191 (Pittsburgh, Pennsylvania, 1990).

    Google Scholar 

  2. J. C. Miller and R. F. Haglund, Jr. (Eds.), ‘Laser Ablation — Mechanisms and Applications’, Lecture Notes in Physics, vol. 389 (Berlin: Springer, 1991).

    Google Scholar 

  3. E. Fogarassy and S. Lazare (Eds.), ‘Laser Ablation of Electronic Materials — Basic Mechanisms and Applications’, Proc. E-MRS, vol. 4 (Elsevier: North-Holland, 1992).

    Google Scholar 

  4. J. C. Miller (Ed.), ‘Laser Ablation — Principles and Applications’, Springer Series Mater. Sci., vol. 28 (Berlin: Springer, 1994).

    Google Scholar 

  5. E. Fogarassy, G. Geohegan and M. Stuke (Eds.), Laser Ablation, Proc. E-MRS, vol. 55 (Amsterdam: North-Holland, 1996).

    Google Scholar 

  6. R. Russo, D. Geohegan, K. Murakami and R. Haglund (Eds.), ‘Laser Ablation’, Appl. Surf. Sci. (North-Holland, Amsterdam, 1998), pp. 127–129.

    Google Scholar 

  7. C. R. Phipps (Ed.), ‘High-Power Laser Ablation’, Proc. SPIE 3343 (1998); Proc. SPIE 3885 (2000); Proc. SPIE 4065 (2000); Proc. SPIE 4760 (2002).

    Google Scholar 

  8. D. Bäuerle D., Laser Processing and Chemistry, 3 Ed. (Berlin: Springer-Verlag, 2000).

    Google Scholar 

  9. V. V. Novozhilov, Dokl. Akad. Nauk SSSR 270, 831 (1983).

    Google Scholar 

  10. E. N. Sobol, Phase Transformations and Ablation in Laser-Treated Solids (New York: Wiley, 1995).

    Google Scholar 

  11. D. Bäuerle, B. Luk’yanchuk, P. Schwab, X. Z. Wang and E. Arenholz, Laser ablation: Fundamentals and Recent Developments, S. Lazare (Eds.), ‘Laser Ablation of Electronic Materials — Basic Mechanisms and Applications’, Proc. E-MRS, vol. 4 (Elsevier: North-Holland, 1992) In Ref. [3], p. 39.

    Google Scholar 

  12. D. Bäuerle, B. Luk’yanchuk, N. Bityurin and S. Anisimov, ‘Pulsed-laser Ablation’, in L.D. Laude (Ed.), Excimer Lasers (Dordrecht: Kluwer Academic Publishers, 1994), p. 39.

    Google Scholar 

  13. J. H. Yoo, S. H. Leong, X. L. Mao and R. E. Russo, Appl. Phys. Lett. 79, 444 (2001).

    Article  CAS  Google Scholar 

  14. M. A. Eľyashevich, S. I. Anisimov, G. S. Romanov, L. I. Grechihin, L. Ya. Min’ko, G and I. Bakanovich, Breakdown of Metals Exposed to Laser Radiation, Report No. KEA-14 (Minsk: Physics Institute, Belarussian SSR Academy of Sciences, 1963).

    Google Scholar 

  15. S. I. Anisimov, Ya. A. Imas, G. S. Romanov and Yu. V. Khodyko, Action of High-Power Radiation on Metals (Springfield, VA: National Technical Information Service, 1971).

    Google Scholar 

  16. J. F. Ready, Effects of High-Power Laser Radiation (New York: Academic Press, 1971).

    Google Scholar 

  17. S. I. Anisimov, A. M. Bonch-Bruevich, M. A. Eľyashevich, Ya. A. Imas, N. A. Pavlenko and G. S. Romanov, Zh. Tekh. Fiz. 36, 1273 (1966).

    CAS  Google Scholar 

  18. S. I. Anisimov, Teplofiz. High Temp. 6, 110 (1968).

    Google Scholar 

  19. B. Ya. Lyubov and E. N. Sobol, In: Effect of Concentrated Energy Flows on Materials, Ed. by N. N. Rykalin (Moscow: Nauka, 1985), p. 226.

    Google Scholar 

  20. B. Ya. Lyubov and E. N. Sobol, J. Eng. Phys. Thermophys. 45, 670 (1983).

    Google Scholar 

  21. S. I. Anisimov and B. S. Luk’yanchuk, Physics — Uspekhi 45, 293 (2002).

    CAS  Google Scholar 

  22. S. I. Anisimov, ‘Ablation of Metals with Femtosecond Laser Pulses’, In A. Guenther (Ed.), International Trends in Applied Optics (Washington, DC: Optical Society of America; Bellingham, WA: SPIE, 2002).

    Google Scholar 

  23. N. Bityurin, B. S. Luk’yanchuk, M. H. Hong and T. C. Chong, Chem. Rev. 103, 519 (2003).

    Article  CAS  Google Scholar 

  24. S. Preuss, A. Demchuk and M. Stuke, Appl. Phys. A 61, 33 (1995).

    Google Scholar 

  25. J. Krueger and W. Kautek, Appl. Surf. Sci. 96–98, 430 (1996).

    Google Scholar 

  26. A. Rosenfeld and E. E. B. Campbell, Appl. Surf. Sci. 96–98, 439 (1996).

    Google Scholar 

  27. A. Cavalleri, K. Sokolowski-Tinten, J. Bialkowski and D. von der Linde, Appl. Phys. Lett. 72, 2385 (1998).

    Article  CAS  Google Scholar 

  28. R. F. Haglund Jr., ‘Mechanisms of Laser-Induced Desorption and Ablation’, in J. C. Miller and R. F. Haglund, Jr. (Eds.), Laser Ablation and Desorption (San Diego: Academic Press, 1998), p. 15.

    Google Scholar 

  29. D. E. Gray (Ed.), American Institute of Physics Handbook, 3rd edition (New York: McGraw-Hill, 1972).

    Google Scholar 

  30. Ya. I. Frenkel, Kinetic Theory of Liquids (Oxford: Clarendon Press, 1946).

    Google Scholar 

  31. S. Küper, J. Brannon and K. Brannon, Appl. Phys. A 56, 43 (1993).

    Google Scholar 

  32. B. Luk’yanchuk, N. Bityurin, S. Anisimov and D. Bäuerle, ‘Photophysical Ablation of Organic Polymers’, in L. D. Laude (Ed.), Excimer Lasers, NATO ASI Series, vol. E 256 (Dordrecht: Kluwer Academic Publishers, 1994), p. 59.

    Google Scholar 

  33. Yu. V. Afanasiev and O. N. Krokhin, Sov. Phys. JETP 25, 639 (1967).

    Google Scholar 

  34. N. Arnold, B. Luk’yanchuk and N. Bityurin, Appl. Surf. Sci. 127–129, 184 (1998).

    Google Scholar 

  35. D. P. Brunco, M. Q. Thompson, C. E. Otis and P. M. Goodwin, J. Appl. Phys. 72, 434 (1992).

    Article  Google Scholar 

  36. N. Arnold, B. Luk’yanchuk, N. Bityurin and D. Bäuerle, Laser Physics 8, 47 (1998).

    CAS  Google Scholar 

  37. N. Arnold, B. Luk’yanchuk and N. Bityurin, Proc. SPIE 3343, 484 (1998).

    CAS  Google Scholar 

  38. Yu. V. Vorob’ev, Moments Method in Applied Mathematics (New York: Gordon & Breach Sci. Publ., 1962).

    Google Scholar 

  39. A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov and A. P. Mikhailov, Blow-up in Quasilinear Parabolic Equations (Berlin: De Guyter, 1995).

    Google Scholar 

  40. D. Zwillinger, Handbook of Differential Equations (Boston: Academic Press, 1989).

    Google Scholar 

  41. S. Wolfram, The Mathematica Book, 4th ed. (Champaign, IL: Wolfram Media, 1999).

    Google Scholar 

  42. T. Goetz and M. Stuke, Appl. Phys. A 64, 539 (1997).

    Google Scholar 

  43. A. A. Andronov, A. A. Vitt and S. E. Khaikin, Theory of Oscillators (New York: Dover, 1987).

    Google Scholar 

  44. Ya. B. Zeldovich, G. I. Barenblatt, V. B. Librovich and G. M. Makhviladze, The Mathematical Theory of Combustion and Explosions (New York: Consultants Bureau, 1985).

    Google Scholar 

  45. G. Barenblatt, Scaling, Self-Similarity, and Intermediate Asymptotics (Cambridge: Cambridge Univ. Press, 1996).

    Google Scholar 

  46. D. A. Frank-Kamenetski, Diffusion and Heat Transfer in Chemical Kinetics (New York: Plenum Press, 1969).

    Google Scholar 

  47. S. I. Anisimov and V. A. Khokhlov, Instabilities in Laser — Matter Interaction (Boca Raton, FL: CRC Press, 1995).

    Google Scholar 

  48. J. H. Yoo, S. H. Jeong, X. L. Mao, R. Greif and R. E. Russo, Appl. Phys. Lett. 76, 783 (2000).

    Article  CAS  Google Scholar 

  49. N. M. Bulgakova and A. V. Bulgakov, Appl. Phys. A 73, 199 (2001).

    Google Scholar 

  50. Q. Lu, S. S. Mao, X. L. Mao and R. E. Russo, Appl. Phys. Lett. 80, 3072 (2002).

    CAS  Google Scholar 

  51. F. V. Bunkin and M. I. Tribelskii, Sov. Phys. Uspekhi 23, 105 (1980).

    Article  Google Scholar 

  52. N. Bityurin, N. Arnold, B. Luk’yanchuk and D. Bäuerle, Appl. Surf. Sci. 127, 164 (1998).

    Google Scholar 

  53. N. Arnold and N. Bityurin, Appl. Phys. A 68, 615, (1999).

    Google Scholar 

  54. N. Bityurin, Proc. SPIE. 4423, 197 (2001).

    CAS  Google Scholar 

  55. N. Bityurin and A. Malyshev, J. Appl. Phys. 92, 605 (2002).

    Article  CAS  Google Scholar 

  56. M. Himmelbauer, N. Bityurin, B. Luk’yanchuk, N. Arnold and D. Bäuerle, Proc. SPIE 3093, 220 (1997).

    CAS  Google Scholar 

  57. E. E. Ortelli, F. Geiger, T. Lippert, J. Wei and A. Wokaun, Macromolecules 33, 5090, (2000).

    Article  CAS  Google Scholar 

  58. T. Lippert and J. T. Dickinson, Chem. Rev. 102, 453 (2003).

    Google Scholar 

  59. S. V. Babu, G. C. D’Couto and F. D. Egitto, J. Appl. Phys. 72, 692 (1992).

    Article  CAS  Google Scholar 

  60. M. Himmelbauer, E. Arenholz and D. Bäuerle, Appl. Phys. A 63, 87 (1996).

    Google Scholar 

  61. G. Paraskevopoulos, D. L. Singleton, R. S. Irwin and R. S. Taylor, J. Appl. Phys. 70, 1938 (1991).

    Article  CAS  Google Scholar 

  62. R. S. Taylor, D. L. Singleton and G. Paraskevopoulos, Appl. Phys. Lett. 50, 1779 (1987).

    CAS  Google Scholar 

  63. N. Bityurin, S. Muraviov, A. Alexandrov and A. Malyshev, Appl. Surf. Sci. 110, 270 (1997).

    Article  Google Scholar 

  64. M. Himmelbauer, E. Arenholz, D. Bäuerle and K. Schichler, Appl. Phys. A 63, 337 (1996).

    Google Scholar 

  65. P. E. Dyer, G. A. Oldershaw and D. J. Schudel, J. of Phys. D — Appl. Phys. 26, 323 (1993).

    CAS  Google Scholar 

  66. M. Lapczyna and M. Stuke, Appl. Phys. A 66, 473 (1998).

    Google Scholar 

  67. L. Museur, W. Q. Zheng, A. V. Kanaev and M. C. Castex, IEEE J. Sel. Topics Quantum. Electron. 1, 900 (1995).

    CAS  Google Scholar 

  68. D. Riedel M. C. Castex, Appl. Phys. A 69, 375 (1999).

    Google Scholar 

  69. H. H. G. Jellinek and R. Srinivasan, J. Phys. Chem. 88, 3048 (1984).

    Article  CAS  Google Scholar 

  70. M. C. K. Tinone, K. Tanaka and N. Ueno, J. Vac. Sci. Technol. 13, 1885 (1995).

    CAS  Google Scholar 

  71. G. H. Pettit and R. Sauerbrey, Appl. Phys. Lett. 58, 793 (1991).

    Article  CAS  Google Scholar 

  72. G. H. Pettit and R. Sauerbrey, Appl. Phys. A 56, 51 (1993).

    Google Scholar 

  73. G. H. Pettit, M. N. Ediger, D. W. Hahn, B. E. Brinson and R. Sauerbrey, Appl. Phys. A 58, 573 (1994).

    Google Scholar 

  74. T. Lippert, L. S. Bennett, T. Nakamura, H. Niino, A. Ouchi and A. Yabe, Appl. Phys. A 63, 257 (1996).

    Google Scholar 

  75. P. E. Dyer, D. M. Karnakis and G. A. Oldershaw, Appl. Surf. Sci. 86, 1 (1995).

    CAS  Google Scholar 

  76. H. Mauser, Z. Naturforsch. 22 B, 569, (1967).

    Google Scholar 

  77. H. Mauser, Z. Naturforsch. 34 C, 1264 (1979).

    Google Scholar 

  78. N. M. Bityurin, Ph.D. Thesis, Inst. Appl. Phys., USSR Ac. Sci., Gorkii, USSR, 1988.

    Google Scholar 

  79. N. Bityurin, Appl. Surf. Sci. 138–139, 354 (1999).

    Google Scholar 

  80. N. M. Bityurin, V. N. Genkin and V. V. Sokolov, Sov. J. Polymer Sci. 24 A, 748 (1982).

    Google Scholar 

  81. M. C. Castex, N. Bityurin, C. Olivero, S. Muraviov, N. Bronnikova and D. Riedel, Appl. Surf. Sci. 168, 175 (2000).

    Article  CAS  Google Scholar 

  82. M. C. Castex and N. Bityurin, Appl. Surf. Sci. 197–198, 805, (2002).

    Google Scholar 

  83. N. Bityurin and M. C. Castex, J. Appl. Phys. (2003) (to be published).

    Google Scholar 

  84. K. Schildbach, Proc. SPIE 1279, 60, (1990).

    CAS  Google Scholar 

  85. K. A. Valiev, L. V. Velikov, Yu. I. Dorofeev and V. E. Skurat, Chemistry of High Energy 22, 352 (1988).

    CAS  Google Scholar 

  86. J. C. White, H. G. Craighead, R. E. Howard, L. D. Jackel, R. E. Beringer, R. W. Epworth, D. Henderson and J. E. Sweeney, Appl. Phys. Lett. 44, 22 (1984).

    Article  CAS  Google Scholar 

  87. K. Kudo, T. Iwabuchi, K. Muton, T. Miyata, R. Sano and K. Tanaka, Jap. J. Appl. Phys. 29, 2572 (1990).

    CAS  Google Scholar 

  88. G. D. Mahan, H. S. Cole, Y. S. Liu and H. R. Philipp, Appl. Phys. Lett. 53, 2377 (1988).

    Article  CAS  Google Scholar 

  89. B. J. Garrison and R. Srinivasan, Appl. Phys. Lett. 44, 849 (1984).

    Article  CAS  Google Scholar 

  90. M. S. Kitai, V. L. Popkov and V. A. Semchishen, Makromol. Chem. Macromol. Symp. 37, 257 (1990).

    CAS  Google Scholar 

  91. D. E. Hare, J. Franken and D. D. Dlott, J. Appl. Phys. 77, 5950 (1995).

    Article  CAS  Google Scholar 

  92. R. Srinivasan, B. Braren and K. G. Casey, Appl. Phys. 68, 1842 (1990).

    CAS  Google Scholar 

  93. D. E. Hare and D. D. Dlott, Appl. Phys. Lett. 64, 715 (1994).

    Article  CAS  Google Scholar 

  94. L. S. Bennet, T. Lippert, H. Furutani, H. Fukumura and H. Masuhara, Appl. Phys. A 63, 327 (1996)

    Google Scholar 

  95. G. Odian, Principle of Polymerization, 2nd ed. (New York: Wiley, 1970), p. 258.

    Google Scholar 

  96. G. M. Bartenev, Stability and Mechanisms of Polymer Destruction (Moscow: Khimia, 1984) (in Russian).

    Google Scholar 

  97. Ya. B. Zeldovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (New York: Academic Press, 1966, 1967).

    Google Scholar 

  98. N. Bityurin, A. Malyshev, B. Luk’yanchuk, S. Anisimov and D. Bäuerle, Proc. SPIE 2802, 103 (1996).

    CAS  Google Scholar 

  99. B. Luk’yanchuk, N. Bityurin, S. Anisimov, A. Malyshev, N. Arnold and D. Bäuerle, Appl. Surf. Sci. 106, 120 (1996).

    Google Scholar 

  100. A. Malyshev, Ph.D. Thesis, Inst. Appl. Phys. Russian Ac. Sci., N. Novgorod, 2002.

    Google Scholar 

  101. G. B. Blanchet, P. Cotts and C. R. Fincher Jr., J. Appl. Phys. 68, 2975 (2000).

    Google Scholar 

  102. Yu. A. Mikheev, T. S. Popravko and D. Ya. Toptygin, Doklady AN SSSR 210, 148 (1973).

    CAS  Google Scholar 

  103. A. Gupta, R. Liang, F. D. Tsay and J. Moacanin, Macromolecules 13, 1696 (1980).

    CAS  Google Scholar 

  104. S. Küper and M. Stuke, Appl. Phys. A 49, 211 (1989).

    Google Scholar 

  105. L. V. Zhigiley, P. B. Kodali and B. J. Garrison, J. Phys. Chem. B 102, 2845 (1998).

    Google Scholar 

  106. L. V. Zhigiley, E. Leveugle, B. J. Garisson, Ya. G. Yingling and M. I. Zeifman, Chem. Rev. 102, 321 (2003).

    Google Scholar 

  107. K. Tonyali, L. C. Jensen and J. T. Dickinson, J. Vac. Sci. Technol. A 6, 941 (1988).

    Google Scholar 

  108. T. Bahners and E. Schollmeyer, J. Appl. Phys. 66, 1884 (1989).

    Article  Google Scholar 

  109. E. Arenholz, M. Wagner, J. Heitz and D. Bäuerle, Appl. Phys. A 55, 119 (1992).

    Google Scholar 

  110. N. Bityurin, E. Arenholz, N. Arnold and D. Bäuerle (to be published).

    Google Scholar 

  111. Yu. V. Afanasiev, B. N. Chichkov, N. N. Demchenko, V. A. Isakov and I. N. Zavestovskaya, J. Russ. Laser Res. 20, 89 (1999).

    Google Scholar 

  112. Yu. V. Afanasiev, B. N. Chichkov, V. A. Isakov, A. P. Kanavin and S. A. Uryupin, J. Russ. Laser Res. 20, 189 (1999).

    CAS  Google Scholar 

  113. Yu. V. Afanasiev, B. N. Chichkov, N. N. Demchenko, V. A. Isakov, I. N. Zavestovskaya, J. Russ. Laser Res. 20, 489 (1999).

    CAS  Google Scholar 

  114. Yu. V. Afanasiev, B. N. Chichkov, V. A. Isakov, A. P. Kanavin and S. A. Uryupin, J. Russ. Laser Res. 21, 34 (2000).

    Article  Google Scholar 

  115. Yu. V. Afanasiev, B. N. Chichkov, V. A. Isakov, A. P. Kanavin and S. A. Uryupin, J. Russ. Laser Res. 21, 505 (2000).

    Article  CAS  Google Scholar 

  116. J. Hohfeld, Ultrafast Electron-, Lattice-and Spin-Dynamics in Metals (Berlin: VWF Verlag fur Wissenshaft und Forcschung, 1998).

    Google Scholar 

  117. S. I. Anisimov, B. L. Kapeliovich and T. L. Perel’man, Sov. Phys. JETP 39, 375 (1974).

    Google Scholar 

  118. J. G. Fujimoto, J. M. Liu, E. P. Ippen and N. Blombergen, Phys. Rev. Lett. 53, 1873 (1984).

    Article  Google Scholar 

  119. X. Y. Wang, D. M. Riffle, Y.-S. Lee and M. C. Downer, Phys. Rev. B 50, 8016 (1994).

    Google Scholar 

  120. C.-K. Sun, F. Vallee, L. H. Acioli, E. P. Ippen and J. G. Fujimoto, Phys. Rev. B 50, 15337 (1994).

    Google Scholar 

  121. R. H. M. Groeneveld, H. Sprik and A. Lagendijk, Phys. Rev. B 51, 11433 (1995).

    Google Scholar 

  122. J. Hohlfeld, J. G. Müller, S.-S. Wellershoff and E. Matthias, Appl. Phys. B 64, 387 (1997).

    Google Scholar 

  123. L. A. Fal’kovskiï and E. G. Mishchenko, JETP 88, 84 (1999).

    Google Scholar 

  124. S. I. Anisimov and B. Rethfeld, Izv. Ross. Akad. Nauk Ser. Fiz. 61 1642 (1997).

    CAS  Google Scholar 

  125. A. P. Kanavin, I. V. Smetanin, V. A. Isakov, Yu. V. Afanasiev, B. N. Chichkov, B. Wellegehausen, S. Nolte, C. Momma and A. Tünnermann, Phys. Rev. B 57, 14698 (1998).

    Google Scholar 

  126. J. Güdde, J. Hohlfeld, J. G. Müller and E. Matthias, Appl. Surf. Sci. 127–129, 40 (1998).

    Google Scholar 

  127. S.-S. Wellershoff, J. Hohlfeld, J. Güdde and E. Matthias, Appl. Phys. A 69 (Suppl.) S99 (1999).

    Google Scholar 

  128. S. I. Anisimov, B. I. Makshantsev and A. V. Barsukov, Opt. Acoust. Rev. 1, 251 (1991).

    Google Scholar 

  129. B. Rethfeld, A. Kaiser, M. Vicanek and G. Simon, Appl. Phys. A 69 [Suppl.], S109 (1999).

    Google Scholar 

  130. B. S. Luk’yanchuk, S. I. Anisimov and Y. F. Lu, Proc. SPIE 4423, 141 (2001).

    Google Scholar 

  131. B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore and M. D. Perry, Phys. Rev. Lett. 74, 2248 (1995).

    Article  CAS  Google Scholar 

  132. A. A. Oraevsky, L. B. DaSilva, M. D. Feit, M. E. Glinsky, B. M. Mammini, K. L. Paquette, M. D. Perry, A. M. Rubenchik, W. Small IV and B. C. Stuart, Proc. SPIE, 2391, 423 (1995).

    Google Scholar 

  133. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore and M. D. Perry, JOSA B 13, 459 (1996).

    Google Scholar 

  134. B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore and M. D. Perry, Phys. Rev. B 53, 1749 (1996).

    Google Scholar 

  135. L. V. Keldysh, Sov. Phys. JETP 20, 1307 (1965).

    Google Scholar 

  136. A. Kaiser, B. Rethfeld, M. Vicanek and G. Simon, Phys. Rev. B 61, 11437 (2000).

    Google Scholar 

  137. B. Rethfeld, A. Kaiser, M. Vicanek and G. Simon, Proc. SPIE, 4423, 250 (2000).

    Google Scholar 

  138. N. Bityurin and A. Kuznetsov, J. Appl. Phys. 93, 1567 (2003).

    Article  CAS  Google Scholar 

  139. J. Guillet, Polymer Photophysics and Photochemistry (Cambridge: Cambridge University Press, 1985).

    Google Scholar 

  140. N. Bityurin and A. Malyshev, Appl. Surf. Sci. 127–129, 199 (1998).

    Google Scholar 

  141. A. Yu. Malyshev and N. M. Bityurin, Quantum Electronics 29, 134 (1999).

    Article  CAS  Google Scholar 

  142. S. Preuss, M. Spaeth, Y. Zhang and M. Stuke, Appl. Phys. Lett. 62, 3049 (1993).

    Article  CAS  Google Scholar 

  143. J. K. Frisoli, Y. Hefetz and T. F. Deutsch, Appl. Phys. B 52, 168 (1991).

    Google Scholar 

  144. A. Rosenfeld, D. Ashkenasi, H. Varel, M. Wähmer and E. E. B. Cambell, Appl. Surf. Sci. 127–129, 76 (1998).

    Google Scholar 

  145. R. Stoian, D. Ashkenasi, A. Rosenfeld and E. E. B. Campbell, Phys. Rev. B 62, 13167 (2000).

    Google Scholar 

  146. R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, D. Ashkenasi, G. Korn, I. V. Hertel and E. E. B. Campbell, In: Technical Digest CLEO’2001 (Baltimore, MD, Baltimore Convention Center, May 6–11, 2001), p. 577.

    Google Scholar 

  147. B. Luk’yanchuk, N. Bityurin, S. Anisimov and D. Bäuerle, Appl. Phys. A 57, 367 (1993).

    Google Scholar 

  148. B. Luk’yanchuk, N. Bityurin, S. Anisimov, N. Arnold and D. Bäuerle, Appl. Phys. A 62, 397 (1996).

    Google Scholar 

  149. B. Luk’yanchuk, N. Bityurin, A. Malyshev, S. Anisimov, N. Arnold and D. Bäuerle, Proc. SPIE 3343, 58, (1998).

    Google Scholar 

  150. V. P. Aksenov, G. N. Mikhailova, J. Boneberg, P. Leiderer and H. J. Muenzer, Proc. SPIE 4423, 70 (2001).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

Anisimov, S.I., Bityurin, N.M., Luk’yanchuk, B.S. (2003). Models for Laser Ablation. In: Peled, A. (eds) Photo-Excited Processes, Diagnostics and Applications. Springer, Boston, MA. https://doi.org/10.1007/1-4020-2610-2_5

Download citation

  • DOI: https://doi.org/10.1007/1-4020-2610-2_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7527-8

  • Online ISBN: 978-1-4020-2610-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics