Skip to main content

Microfabrication of Transparent Materials by Laser Processing

  • Chapter
Photo-Excited Processes, Diagnostics and Applications

Abstract

Microfabrication of transparent materials by laser processing is challenging due to the high transparency of many materials of interest in the near ultraviolet (UV)-visible region. This chapter gives the processing details of fused silica and other transparent materials by pulsed-laser irradiation involving: (1) Direct excitation of transparent materials with high-intensity UV lasers, femtosecond lasers, vacuum ultraviolet (VUV) lasers, and (2) Indirect excitation of the substrate by conventional manosecond pulsed lasers. The indirect-excitation method using laser-induced backside wet etching (LIBWE) to etch transparent materials by laser ablation of an organic solution is described in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Ihlemann, ‘Excimer Laser Ablation of Fused-Silica’, Appl. Surf. Sci. 54, 193–200 (1992).

    Article  CAS  Google Scholar 

  2. J. Ihlemann, B. Wolff and P. Simon, ‘Nanosecond and Femtosecond Excimer Laser Ablation of Fused-Silica’, Appl. Phys. A 54, 363–368 (1992).

    Google Scholar 

  3. J. Ihlemann and B. Wolff-Rottke, ‘Excimer Laser Micro Machining of Inorganic Dielectrics’, Appl. Surf. Sci. 106, 282–286 (1996).

    Article  CAS  Google Scholar 

  4. H. Varel, D. Ashkenasi, A. Rosenfeld, M. Wahmer and E. E. B. Campbell, ‘Micromachining of Quartz with Ultrashort Laser Pulses’, Appl. Phys. A 65, 367–373 (1997).

    Google Scholar 

  5. D. Ashkenasi, M. Lorenz, R. Stoian and A. Rosenfeld, ‘Surface Damage Threshold and Structuring of Dielectrics Using Femtosecond Laser Pulses: The Role of Incubation’, Appl. Surf. Sci. 150, 101–106 (1999).

    Article  CAS  Google Scholar 

  6. K. Miura, J. R. Qiu, H. Inouye, T. Mitsuyu and K. Hirao, ‘Photowritten Optical Waveguides in Various Glasses with Ultrashort Pulse Laser’, Appl. Phys. Lett. 71, 3329–3331 (1997).

    Article  CAS  Google Scholar 

  7. K. Hirao and K. Miura, ‘Writing Waveguides in Silica-Related Glasses with Femtosecond Laser’, Jpn. J. Appl. Phys. 37(Suppl. 1), 49–52 (1998).

    CAS  Google Scholar 

  8. K. Miura, H. Inouye, J. R. Qiu, T. Mitsuyu and K. Hirao, ‘Optical Waveguides Induced in Inorganic Glasses by a Femtosecond Laser’, Nucl. Instrum. Meth. B 141, 726–732 (1998).

    Google Scholar 

  9. K. Hirao and K. Miura, ‘Writing Waveguides and Gratings in Silica and Related Materials by a Femtosecond Laser’, J. Non-Cryst. Solids 239, 91–95 (1998).

    Article  CAS  Google Scholar 

  10. K. Miura, J. R. Qiu, T. Mitsuyu and K. Hirao, “Preparation and Optical Properties of Fluoride Glass Waveguides Induced by Laser Pulses”, J. Non-Cryst. Solids 257, 212–219 (1999).

    Article  Google Scholar 

  11. K. Hirao, ‘Internal Modification of Glass Materials with a Femtosecond Laser’, SPIE Proceedings 4088, 33–39 (2000).

    CAS  Google Scholar 

  12. A. Marcinkevicius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa and J. Nishii, ‘Femtosecond Laser-Assisted Three-Dimensional Microfabrication in Silica’, Opt. Lett. 26, 277–279 (2001).

    Article  CAS  Google Scholar 

  13. T. Kondo, S. Matsuo, S. Juodkazis and H. Misawa, ‘Femtosecond Laser Interference Technique with Diffractive Beam Splitter for Fabrication of Three-Dimensional Photonic Crystals’, Appl. Phys. Lett. 79, 725–727 (2001).

    Article  CAS  Google Scholar 

  14. H. B. Sun, Y. Xu, S. Juodkazis, K. Sun, M. Watanabe, S. Matsuo, H. Misawa and J. Nishii, ‘Arbitrary-Lattice Photonic Crystals Created by Multiphoton Microfabrication’, Opt. Lett. 26, 325–327 (2001).

    CAS  Google Scholar 

  15. V. Mizeikis, H. B. Sun, A. Marcinkevicius, J. Nishii, S. Matsuo, S. Juodkazis and H. Misawa, ‘Femtosecond Laser Micro-Fabrication for Tailoring Photonic Crystals in Resins and Silica’, J. Photochem. Photobiol. A: Chem. 145, 41–47 (2001).

    Article  CAS  Google Scholar 

  16. K. Kawamura, N. Sarukura, M. Hirano and H. Hosono, ‘Holographic Encoding of Permanent Gratings Embedded in Diamond by Two Beam Interference of a Single Femtosecond Near-Infrared Laser Pulse’, Jpn. J. Appl. Phys. 39, L767–L769 (2000).

    Article  CAS  Google Scholar 

  17. K. Kawamura, T. Ogawa, N. Sarukura, M. Hirano and H. Hosono, ‘Fabrication of Surface Relief Gratings on Transparent Dielectric Materials by Two-Beam Holographic Method Using Infrared Femtosecond Laser Pulses‘, Appl. Phys. B 71, 119–121 (2000).

    Google Scholar 

  18. K. Kawamura, N. Sarukura, M. Hirano and H. Hosono, ‘Holographic Encoding of Fine-Pitched Micrograting Structures in Amorphous SiO2 Thin Films on Silicon by a Single Femtosecond Laser Pulse’, Appl. Phys. Lett. 78, 1038–1040 (2001).

    Article  CAS  Google Scholar 

  19. K. Kawamura, N. Sarukura, M. Hirano, N. Ito and H. Hosono, ‘Periodic Nanostructure Array in Crossed Holographic Gratings on Silica Glass by Two Interfered Infrared-Femtosecond Laser Pulses’, Appl. Phys. Lett. 79, 1228–1230 (2001).

    Article  CAS  Google Scholar 

  20. R. Herman, R. S. Marjoribanks, A. Oettl and K. Chen, ‘Laser Shaping of Photonic Materials: Deep Ultraviolet and Ultrafast Lasers’, Appl. Surf. Sci. 154–155, 577–586 (2000).

    Google Scholar 

  21. P. R. Herman, K. P. Chen, M. Wei and J. Zhang, ‘F2-Lasers: High Resolution Optical Processing System for Shaping Photonic Components’, SPIE Proceedings 4274, 149–157 (2001).

    CAS  Google Scholar 

  22. J. Zhang, P. R. Herman, C. Lauer, K. P. Chen and M. Wei, ‘157-nm Laser-Induced Modification of Fused-Silica Glasses’, SPIE Proceedings 4274, 125–132 (2001).

    CAS  Google Scholar 

  23. X. M. Wei, K. P. Chen, D. Coric, P. R. Herman and J. Li, ‘F2-Laser Microfabrication of Buried Structures in Transparent Glasses’, SPIE Proceedings 4637, 251–257 (2002).

    CAS  Google Scholar 

  24. J. Li, P. R. Herman, X. M. Wei, K. P. Chen, J. Ihlemann, G. Marowsky, P. Osterlin and B. Burghardt, ‘High-Resolution F2-Laser Machining of Micro-Optic Components’, SPIE Proceedings 4637, 228–234 (2002).

    CAS  Google Scholar 

  25. K. Sugioka, S. Wada, A. Tsunemi, T. Sakai, H. Takai, H. Moriwaki, A. Nakamura, H. Tashiro and K. Toyoda, ‘Micropatterning of Quartz Substrates by Multiwavelength Vacuum-Ultraviolet Laser-Ablation’, Jpn. J. Appl. Phys. 32, 6185–6189 (1993).

    Article  CAS  Google Scholar 

  26. K. Sugioka, S. Wada, H. Tashiro, K. Toyoda and A. Nakamura, ‘Novel Ablation of Fused Quartz by Preirradiation of Vacuum-Ultraviolet Laser-Beams Followed by 4th Harmonics Irradiation of Nd:YAG Laser’, Appl. Phys. Lett. 65, 1510–1512 (1994).

    Article  CAS  Google Scholar 

  27. K. Sugioka, S. Wada, H. Tashiro, K. Toyoda, Y. Ohnuma and A. Nakamura, ‘Multiwavelength Excitation by Vacuum-Ultraviolet Beams Coupled with 4th-Harmonics of a Q-Switched Nd-YAG Laser for High-Quality Ablation of Fused Quartz’, Appl. Phys. Lett. 67, 2789–2791 (1995).

    Article  CAS  Google Scholar 

  28. K. Sugioka, S. Wada, Y. Ohnuma, A. Nakamura, H. Tashiro and K. Toyoda, ‘Multiwavelength Irradiation Effect in Fused Quartz Ablation Using Vacuum-Ultraviolet Raman Laser’, Appl. Surf. Sci. 96–98, 347–351 (1996).

    Google Scholar 

  29. J. Zhang, K. Sugioka, S. Wada, H. Tashiro and K. Toyoda, ‘Ablation of Fused Quartz by Ultraviolet, Visible or Infrared Laser Coupled with VUV Laser’, Jpn. J. Appl. Phys. 35, L1422–L1425 (1996).

    CAS  Google Scholar 

  30. J. Zhang, K. Sugioka, S. Wada, H. Tashiro and K. Toyoda, ‘Dual-Beam Ablation of Fused Quartz Using 266 nm and VUV Lasers with Different Delay-Times’, Appl. Phys. A 64, 477–481 (1997).

    Google Scholar 

  31. K. Sugioka, J. Zhang, S. Ruschin, S. Wada, H. Tashiro and K. Toyoda, ‘Vacuum-Ultraviolet Laser-Induced Refractive Index Change of Fused Silica’, Appl. Surf. Sci. 129, 843–847 (1998).

    Article  Google Scholar 

  32. K. Sugioka, J. Zhang, S. Wada, H. Tashiro and K. Toyoda, ‘Novel Ablation of Wide Band-Gap Materials by Multiwavelength Excitation Using a VUV-UV Laser System’, Nanotechnology 9, 99–103 (1998).

    Article  CAS  Google Scholar 

  33. K. Sugioka and K. Midorikawa, ‘Novel Technology for Laser Precision Microfabrication of Hard Materials’, SPIE Proceedings 4088, 110–117 (2000).

    CAS  Google Scholar 

  34. J. Zhang, K. Sugioka, T. Takahashi, K. Toyoda and K. Midorikawa, ‘Dual-Beam Ablation of Fused Silica by Multiwavelength Excitation Process Uusing KrF Excimer and F2 Lasers’, Appl. Phys. A 71, 23–26 (2000).

    Google Scholar 

  35. K. Obata, K. Sugioka, T. Akane, N. Aoki, K. Toyoda and K. Midorikawa, ‘Influence of Laser Fluence and Irradiation Timing of F2 Laser on Ablation Properties of Fused Silica in F2-KrF Excimer Laser Multi-Wavelength Excitation Process’, Appl. Phys. A 73, 755–759 (2001).

    Google Scholar 

  36. J. Zhang, K. Sugioka and K. Midorikawa, ‘Direct Fabrication of Microgratings in Fused Quartz by Laser-Induced Plasma-Assisted Ablation with a KrF Excimer Laser’, Opt. Lett. 23, 1486–1488 (1998).

    CAS  Google Scholar 

  37. J. Zhang, K. Sugioka and K. Midorikawa, ‘High-Speed Machining of Glass Materials by Laser-Induced Plasma-Assisted Ablation Using a 532-nm Laser’, Appl. Phys. A 67, 499–501 (1998).

    Google Scholar 

  38. J. Zhang, K. Sugioka and K. Midorikawa, ‘Laser-Induced Plasma-Assisted Ablation of Fused Quartz Using the Fourth Harmonic of a Nd2192:YAG Laser’, Appl. Phys. A 67, 545–549 (1998).

    Google Scholar 

  39. J. Zhang, K. Sugioka, and K. Midorikawa, ‘High-Quality and High-Efficiency Machining of Glass Materials by Laser-Induced Plasma-Assisted Ablation Using Conventional Nanosecond UV, Visible, and Infrared Lasers’, Appl. Phys. A 69, S879–S882 (1999).

    Google Scholar 

  40. M. H. Hong, K. Sugioka, Y. F. Lu, K. Midorikawa and T. C. Chong, ‘Optical Diagnostics in Laser-Induced Plasma-Assisted Ablation of Fused Quartz’, SPIE Proceedings 4088, 359–362 (2000).

    CAS  Google Scholar 

  41. M. H. Hong, K. Sugioka, Y. F. Lu, K. Midorikawa and T. C. Chong, ‘Laser Microfabrication of Transparent Hard Materials and Signal Diagnostics’, Appl. Surf. Sci. 186, 556–561 (2002).

    Article  CAS  Google Scholar 

  42. M. H. Hong, K. Sugioka, D. J. Wu, L. L. Wong, Y. F. Lu, K. Midorikawa and T. C. Chong, ‘Crack-Free Laser Processing of Glass Substrate and Its Mechanisms’, SPIE Proceedings 4637, 270–279 (2002).

    Google Scholar 

  43. J. Wang, H. Niino and A. Yabe, ‘Microfabrication of a Fluoropolymer Film Using Conventional XeCl Excimer Laser by Laser-Induced Backside Wet Etching’, Jpn. J. Appl. Phys. 38, L761–L763 (1999).

    CAS  Google Scholar 

  44. J. Wang, H. Niino and A. Yabe, ‘One-Step Microfabrication of Fused Silica by Laser Ablation of an Organic Solution’, Appl. Phys. A 68, 111–113 (1999).

    Google Scholar 

  45. J. Wang, H. Niino and A. Yabe, ‘Micromachining of Quartz Crystal with Excimer Lasers by Laser-Induced Backside Wet Etching’, Appl. Phys. A 69, S271–S273 (1999).

    Google Scholar 

  46. J. Wang, H. Niino, and A. Yabe, ‘Micromachining by Laser Ablation of Liquid: Super-Heated Liquid and Phase Explosion’, SPIE Proceedings 3933, 347–354 (2000).

    CAS  Google Scholar 

  47. J. Wang, H. Niino and A. Yabe, ‘Micromachining of Transparent Materials by Laser Ablation of Organic Solution’, SPIE Proceedings 4088, 64–69 (2000).

    CAS  Google Scholar 

  48. J. Wang, H. Niino, and A. Yabe, ‘Micromachining of Transparent Materials with Super-Heated Liquid Generated by Multiphotonic Absorption of Organic Molecule’, Appl. Surf. Sci. 154–155, 571–576 (2000).

    Google Scholar 

  49. Y. Yasui, H. Niino, Y. Kawaguchi and A. Yabe, ‘Microetching of Fused Silica by Laser Ablation of Organic Solution with XeCl Excimer Laser’, Appl. Surf. Sci. 186, 552–555 (2002).

    Article  CAS  Google Scholar 

  50. X. Ding, Y. Yasui, Y. Kawaguchi, H. Niino and A. Yabe, ‘Laser Induced Backside Wet Etching of Fused Silica with an Aqueous Solution Containing Organic Molecules’, Appl. Phys. A 75, 437–440 (2002).

    Google Scholar 

  51. X. Ding, Y. Kawaguchi, H. Niino and A. Yabe, ‘Laser-Induced High Quality Etching of Fused Silica Using a Novel Aqueous Medium’, Appl. Phys. A 75, 641–646 (2002).

    Google Scholar 

  52. X. Ding, Y. Kawaguchi, H. Niino and A. Yabe, ‘Fabrication of 1 μm Patterns on Fused Silica Plates by Laser-Induced Backside Wet Etching (LIBWE)’, SPIE Proceedings 4830, 156–161 (2003)

    CAS  Google Scholar 

  53. H. Niino, Y. Yasui, X. Ding, A. Narazaki, T. Sato, Y. Kawaguchi and A. Yabe, ‘Surface Micro-Fabrication of Silica Glass by Laser-Induced Backside Wet Etching with Toluene Solution’, J. Photochem. Photobiol. A: Chem. 158, 179–182 (2003).

    Article  CAS  Google Scholar 

  54. X. Ding, T. Sato, Y. Kawaguchi and H. Niino, ‘Laser-Induced Backside Wet Etching of Sapphire’, Jpn. J. Appl. Phys. 42 L176–L178 (2003).

    Article  CAS  Google Scholar 

  55. K. Zimmer, R. Böhme, A. Braun, B. Rauschenbach and F. Bigl, ‘Excimer Laser-Induced Etching of Sub-Micron Surface Relief Gratings in Fused Silica Using Phase Grating Projection’, Appl. Phys. A 74, 453–456 (2002).

    Google Scholar 

  56. R. Böhme, A. Braun and K. Zimmer, ‘Backside Etching of UV-Transparent Materials at the Interface to Liquids’, Appl. Surf. Sci. 186, 276–281 (2002).

    Google Scholar 

  57. K. Zimmer, A. Braun and R. Böhme, ‘Etching of Fused Silica and Glass with Excimer Laser at 351 nm’, Appl. Surf. Sci. 208, 199–204 (2003).

    Article  CAS  Google Scholar 

  58. D. L. Griscom, ‘Optical Properties and Structures of Defects in Silica Glass’, J. Ceram. Soc. Jpn. 99, 923–942 (1991).

    CAS  Google Scholar 

  59. J. Ikeno, Y. Masugi, O. Horiuchi, T. Kasai and A. Kobayashi, ‘Crack-Free and 3-Dimensional YAG Laser Processing of Glass-Ceramics’, J. Jpn. Soc. Precision Eng. (Japanese) 64, 1062–1066 (1988).

    Google Scholar 

  60. S. I. Dolgaev, A. A. Lyalin, A. V. Simakin and G. A. Shafeev, ‘Fast Etching of Sapphire by a Visible Range Quasi-cw Laser Radiation’, Appl. Surf. Sci. 96–98, 491–495 (1996).

    Google Scholar 

  61. S. I. Dolgaev, A. A. Lyalin, A. V. Simakin and G. A. Shafeev, ‘Etching of Sapphire Assisted by Copper-Vapor Laser Radiation’, Quantum Electron. 26, 65–68 (1996).

    Article  Google Scholar 

  62. S. I. Dolgaev, A. A. Lyalin, A. V. Simakin, V. V. Vornov and G. A. Shafeev, ‘Fast Etching and Metallization of Via-Holes in Sapphire with the Help of Radiation by a Copper Vapor Laser’, Appl. Surf. Sci. 109–110, 201–205 (1997).

    Google Scholar 

  63. Y. Tsuboi, K. Hatanaka, H. Fukumura and H. Masuhara, ‘The 248 nm Excimer Laser Ablation of Liquid Benzene Derivatives: A Relation between Ablation Threshold and Molecular Photochemical Reactivity’, J. Phys. Chem. 98, 11237–11241 (1994).

    Article  CAS  Google Scholar 

  64. H. Fukumura and H. Masuhara, ‘The Mechanism of Dopant-Induced Laser Ablation. Possibility of Cyclic Multiphotonic Absorption in Excited States’, Chem. Phys. Lett. 221, 373–378 (1994).

    Article  CAS  Google Scholar 

  65. D. Kim, M. Ye and C. P. Grigoropoulos, ‘Pulsed Laser-Induced Ablation of Absorbing Liquids and Acoustic-Transient Generation’, Appl. Phys. A 67, 169–181 (1998).

    Google Scholar 

  66. J.-C. Isselin, A.-P. Alloncle and M. Autric, ‘On Laser Induced Single Bubble Near a Solid Boundary: Contribution to the Understanding of Erosion Phenomena’, J. Appl. Phys. 84, 5766–5771 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

Kawaguchi, Y., Niino, H., Yabe, A. (2003). Microfabrication of Transparent Materials by Laser Processing. In: Peled, A. (eds) Photo-Excited Processes, Diagnostics and Applications. Springer, Boston, MA. https://doi.org/10.1007/1-4020-2610-2_12

Download citation

  • DOI: https://doi.org/10.1007/1-4020-2610-2_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7527-8

  • Online ISBN: 978-1-4020-2610-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics