Mycorrhiza in Management of Fruits and Vegetables Diseases

  • Nikhat S. Naqvi
  • S. A. M. H. Naqvi

Abstract

Fruits and vegetables are important source of essential components in adequate and balanced human diet. The indiscriminate use of synthetic pesticides in production system of fruits and vegetables is of great concern for health and environment safety. Research and Development strategies are presently diverted in search of suitable biological alternatives to replace the pesticide use. Substantial progress has been made in exploring the use of microorganisms in control of plant diseases in integrated plant disease management. One such strategy is the better exploitation of microbes present in soil, which contribute to soil fertility. Certain fungi colonize and form symbiotic association with roots of the plant like mycorrhiza. Significant advances have been made in last two decades to understand the potential of mycorrhizal fungi in suppression of plant pathogens especially soil borne pathogens in wide range of fruits and vegetable host plants. The role of mycorrhiza in management of fruits and vegetable diseases is discussed with their mode of action and future perspectives.

Keywords

Phosphorus Bacillus Pseudomonas Gall Microbe 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdalla, M.E. and Abdel-Fattah, G.M. 2000. Influence of the endomycorrhizal fungus Glomus mosseae on the development of peanut pod rot disease in Egypt. Mycorrhiza, 10: 29–35.CrossRefGoogle Scholar
  2. Abdel-Fattah, G.M. and Shabana, Y.M. 2002. Efficacy of the arbuscular mycorrhizal fungus Glomus clarum in protection of cowpea plants against root rot pathogen Rhizoctonia solani. Zeitschrift fur pflanzenkrankheiten und pflanzenschutz-Journal of Plant Diseases and Protection, 109: 207–215.Google Scholar
  3. Allen, M.F. 1991. The ecology of mycorrhizae. Cambridge University Press, Cambridge, 184p.Google Scholar
  4. Al-Momany, A. and Al-Raddad, A. 1988. Effect of vesicular-arbuscular mycorrhizae on Fusarium wilt of tomato and pepper. Alexandria Journal of Agricultural Research, 33: 249–261.Google Scholar
  5. Al-Raddad, A.M. 1995. Interaction of Glomus mosseae and Paecilomyces lilacinus on Meloidogyne javanica of tomato. Mycorrhiza, 5: 233–236.CrossRefGoogle Scholar
  6. Atilano, R.A., Menge, J. A. and Van Gundy, S. 1981. Interaction between Meloidogyne arenaria and Glumus fasciculatum in grapes. Journal of Nematology, 13: 52–57.PubMedGoogle Scholar
  7. Atilano, R.A., Rich, J.R., Ferris, H. and Menge, J.A. 1976. Effect of Meloidogyne arenaria on endomycorrhizal grape (Vitis vinifera) rootings. J. Nematol. 8: 278.Google Scholar
  8. Azaizeh, A. Marschner, H., Romheld, V. and Wittenmayer, L. 1995. Effect of a vesicular-arbuscular mycorrhizal fungus and other soil microorganisms on growth, mineral nutrient acquisition and root exudation of soil-grown maize plants. Mycorrhiza, 5: 321–327.CrossRefGoogle Scholar
  9. Azcon-Aguilar, C. and Barea, J.M. 1996. Arbuscular mycorrhizas and biological control of soil-borne plant pathogens— an overview of mechanisms involved. Mycorrhiza, 6: 457–464.CrossRefGoogle Scholar
  10. Baath, E. and Hayman, D.S. 1983. Plant growth responses to vesicular-arbuscular mycorrhiza XIV. Interactions with Verticillium wilt on tomato plants. New Phytol. 95: 419–426.CrossRefGoogle Scholar
  11. Baath, E. and Hayman, D.S. 1984. No effect of vesicular-arbuscular mycorrhiza on red core disease of strawberry. Transactions of British Mycological Society, 82:532–536.Google Scholar
  12. Baghel, P.P.S., Bhatti, D.S. and Jalali, B.L. 1990. Interaction of VA mycorrhizal fungus and Tylenchulus semipenetrans on citrus. In: “Current trends in Mycorrhizal Research” (eds. Jalali, B.L. and Chand, H.), Proc. Natl. Conf. On Mycorrhiza, Haryana Agricultural University, Hissar, India, TERI, New Delhi, pp. 118–119.Google Scholar
  13. Bagyaraj, D.J. 1992. Vesicular-arbuscular mycorrhiza: Application in Agriculture. Methods in Microbiol. 24: 360–373.Google Scholar
  14. Bagyaraj, D.J., Manjunath, A. and Reddy, D.D.R. 1979. Interaction of vesicular-arbuscular mycorrhiza with root knot nematode in tomato. Plant Soil, 51:397–403.CrossRefGoogle Scholar
  15. Bansal, M. and Mukerji, K.G. 1994. Positive correlation between VAM-induces changes in root exudation and mycorrhizosphere mycoflora. Mycorrhiza, 5:39–44.CrossRefGoogle Scholar
  16. Bansal, M., Chamola, B.P., Sarwar, N. and Mukerji, K.G. 2000. Mycorrhizosphere: Interactions between rhizosphere microflora and VAM fungi. In: “Mycorrhizal Biology” (eds. Mukerji, K.G., Chamola, B.P. and Jagjit Singh), Kluwer Academic Publishers, NY, pp. 143–152.Google Scholar
  17. Barea, J.M., Azcon, R. and Azcon-Aguilar, C. 2002. Mycorrhizosphere interactions to improve plant fitness and soil quality. Antonie van Leeuwenhoek International Journal of General and Molecular Microbiology, 81: 343–351.CrossRefGoogle Scholar
  18. Becker, W.N. 1976. Quantification of onion vesicular-arbuscular mycorrhizae and their resistance to Pyrenochaeta terrestris, Ph.D. thesis, University of Illinois, Urbana, pp.72.Google Scholar
  19. Benhamou, N., Fortin, J.A., Hamel, C., St-Arnaud, M. and Shatilla, A. 1994. Resistance responses of mycorrhizal Ri T-DNA-transformed carrot roots to infection by Fusarium oxysporum f.sp. chrysanthemi. Phytopathology, 84: 958–968.CrossRefGoogle Scholar
  20. Berta, G., Fusconi, A. and Trotta, A. 1993. VA mycorrhizal infection and the morphology and function of root systems. Environ. Expt. Bot., 33:159–173.CrossRefGoogle Scholar
  21. Bethlenfalvay, G.J. and Linderman, R.G. (eds.) 1992. Mycorrhizae in Sustainable Agriculture. ASA Special Publication No. 54, Madison, Wis.Google Scholar
  22. Blee, K.A. and Anderson, A.J. 1996. Defence related transcript accumulation in Phaseolus vulgaris L. colonized by the arbuscular mycorrhizal fungus Glomus intraradices Schenck and Smith. Plant Physiol. 110: 675–688.PubMedGoogle Scholar
  23. Bochow, H. and Abou-Shaar, M. 1990. On the phytosanitary effect of mycorrhiza in tomatoes to the corky-root disease. Zentralbratt fur mikrobiologie, 145: 171–176.Google Scholar
  24. Bodker, L., Kjoller, R. and Rosendahl, S. 1998. Effect of phosphate and the arbuscular mycorrhizal fungus, Glomus intraradices on disease severity of root of peas (Pisum sativum) caused by Aphanomyces euteiches. Mycorrhiza, 8: 169–174.CrossRefGoogle Scholar
  25. Bon-doux, P. and Perrin, R. 1982. Mycorrhizas and Plant protection. Comptes, Rendus des seances de I’ Academie d Agric. De France. 68:1162–1177.Google Scholar
  26. Buwalda, J.G., Stribley, D.P. and Tinker, P.B. 1984. The development of endomycorrhizal root systems.V. The detailed pattern of development of infection and the control of infection level by host in young leek plants. New Phytol. 96: 411.CrossRefGoogle Scholar
  27. Camprubi, A. Piaochet, J., Calvet, C. and Estaum, V. 1993. Effects of the root-lesion nematode Pratylenchus vulnus and the vesicular-arbuscular mycorrhizal fungus Glomus mosseae on the growth of three plum rootstocks. Plant Soil, 153: 223–229.CrossRefGoogle Scholar
  28. Caron, M., Fortin, J.A. and Richard, C. 1986a. Effect of inoculation sequence on the interaction between Glomus intraradices and Fusarium oxysporum f.sp. radices-lycopersici in tomatoes. Canadian Journal of Plant Pathology, 8:12–16.CrossRefGoogle Scholar
  29. Caron, M., Richard, C. and Fortin, J.A. 1986b. Effect of preinfestation of the soil by a vesicular-arbuscular mycorrhizal fungus, Glomus intraradices, on Fusarium crown and root rot of tomatoes. Phytoprotec. 67:15–19.Google Scholar
  30. Cooper, K.M. and Grandison, G.S. 1986. Interaction of vesicular-arbuscular mycorrhizal fungi and root knot nematode on cultivar of tomato and white clover susceptible to Meloidogyne hapla. Ann. app. Biol. 108: 555–565.CrossRefGoogle Scholar
  31. Cooper, K.M. and Grandison, G.S. 1987. Effects of vesicular-arbuscular mycorrhizal fungi on infection of tomarillo (Cyphomandra betacea) by Meloidogyne incognita in fumigated soil. Plant Dis. 71: 1101–1106.CrossRefGoogle Scholar
  32. Cordier, C., Gianinazzi, S. and Gianinazzi-Pearson, V. 1996. Colonization patterns of root tissues by Phytophthora nicotianae var. parasitica related to reduced disease in mycorrhizal tomato. Plant Soil, 185: 223–232.CrossRefGoogle Scholar
  33. Daft, M.J. and Okasanya, B.O. 1973. Effect of Endogone mycorrhiza on plant growth. V. Influence of infection on the multiplication of viruses in tomato, petunia and strawberry. New Phytol. 72: 975–983.CrossRefGoogle Scholar
  34. Davis, R.M. 1980. Influence of Glomus fasciculatum on Thielaviopsis basicola root rot of citrus. Plant Disease, 64:839–840.CrossRefGoogle Scholar
  35. Davis, R.M. and Menge, J.A. 1980. Influence of Glomus fasciculatum and soil phosphorus on Phytophthora root rot of citrus. Phytopathology, 70: 447–452.Google Scholar
  36. Davis, R.M. and Menge, J.A. 1981. Phytophthora parasitica inoculation technique and intensity of vesicular arbuscular mycorrhizae in citrus. New Phytol. 87: 705–715.CrossRefGoogle Scholar
  37. Davis, R.M., Menge, J.A. and Zentmyer, G.A. 1978. Influence of vesicular-arbuscular mycorrhizae on Phytophthora root rot of three crop plants. Phytopathol. 68: 1614–1617.CrossRefGoogle Scholar
  38. Dehne, H.W. 1982. Interaction between vesicular-arbuscular mycorrhizal fungi and plant patho-gens. Phytopathology, 72: 1115–1119.Google Scholar
  39. Dehne, H.W. and Schonbeck, F. 1978. The influence of endotrophic mycorrhiza on plant diseases, 3, Chitinase—activity and ornithine-cycle. J. Plant Dis. Protec. 85: 666–678.Google Scholar
  40. Dehne, H.W. and Schonbeck, F. 1979. The influence of endotrophic mycorrhiza on Fusarium wilt of tomato. Z. Pfkrankh. Schutz. 82: 630–632.Google Scholar
  41. Dehne, H.W., Schonbeck, F. and Baltruschat, H. 1978. The influence of endotrophic mycorrhiza on plant diseases. 3, Chitinase—activity and the ornithine-cycle. Z. Pflanzenkrankh. pflanzenschutz, 85: 666–678.Google Scholar
  42. Dixon, R.A., Dey, P.M. and Lamb, C.J. 1993. Phytoalexin: Enzymology and molecular biology. Adv. Enymol. 55: 1–136.Google Scholar
  43. Dumas-Gaudot, E., Gollotte, A., Cordier, C., Gianinazzi, S. and Gianinazzi-Pearson, V. 2000. Modulation of host defence systems. In: ‘Arbuscular mycorrhizas: physiology and function’.(eds. Kapulnick, Y. and Douds Jr. D.D.) Kluwer Academic Press, pp. 173–200.Google Scholar
  44. Dumas-Gaudot, E., Slezack, S., Dassi, B., Pozo, M.J., Gianinazzi-Pearson, V. and Gianinazzi, S. 1996. Plant hydrolytic enzymes ( chitinases and β-1,3-glucanases) in root reactions to pathogenic and symbiotic micro-organisms. Plant and Soil, 185: 211–221.CrossRefGoogle Scholar
  45. Dugassa, G. D., von Alten, H. and Schonbeck, F. 1996. Effect of arbuscular mycorrhiza (AM) on health of Linum usitatissimum L. infected by fungal pathogens. Plant Soil, 185: 173–182.CrossRefGoogle Scholar
  46. El Ghachtouli, N., Paynot, M., Morandi, D., Martin-Tanguy, J. and Gianinazzi, S. 1995. The effect of polyamines on endomycorrhizal infection of wild type Pisum sativum cv. Frisson (nod+ myc+) and two mutants (nod myc+ and nod myc). Mycorrhiza, 5: 189–192.Google Scholar
  47. Franken, P. and Gnadinger, F. 1994. Analysis of parsley arbuscular endomycorrhiza: infection development and mRNA levels of defence related genes. Mol. Plant-Microbe Interac. 7: 612–620.Google Scholar
  48. Garcia-Garrido, J.M. and Ocampo, J.A. 1989a. Interaction between Glomus mosseae and Erwinia carotovora and its effect on the growth of tomato plants. New Phytol. 110: 551–555.CrossRefGoogle Scholar
  49. Garcia-Garrido, J.M. and Ocampo, J.A. 1989b. Effect of VA mycorrhiza infection of tomato on damage caused by Pseudomonas syringae. Soil Biol.Biochem. 121: 165–167.CrossRefGoogle Scholar
  50. Garcia-Garrido, J.M. and Ocampo, J.A. 2002. Regulation of the plant defence response in arbuscular mycorrhizal symbiosis. Journal of experimental Botany, 53: 1377–1386.CrossRefPubMedGoogle Scholar
  51. Gianinazzi, S. and Gianinazzi-Pearson, V. 1992. Cytological, histochemistry and immunocy-tochemistry as tools for studying structure and function in endomycorrhiza. In: “Technique for the study of Mycorrhiza: Methods in Microbiology” vol. 24 (eds. Norris, J.P., Read, D.J., and Varma, A.K.) Academic Press, London, pp. 109–139.Google Scholar
  52. Gianinazzi-Pearson, V., Dumas-Gaudat, E., Gollote, A., Tahiri-Alaoui, A. and Gianinazzi, S. 1996. Cellular and molecular defence-related root responses to invasion by arbuscular mycorrhizal fungi. New Phytol. 133: 45–57.CrossRefGoogle Scholar
  53. Goncalves, E.J., Muchovej, J.J. and Muchovej, R.M.C. 1991. Effect of kind and method of fungicidal treatment of bean seed on infection by the VA mycorrhizal fungus Glomus macrocarpum and by the pathogenic fungus Fusarium solani. I. Fungal and plant parameters. Plant Soil, 132: 41–46.CrossRefGoogle Scholar
  54. Good, J.M. 1968. Relation of plant-parasitic nematodes to soil management practices. In: “Tropical Nematology” (eds. Smart, G.C. and Perry, V.G.), Univ. of Florida, Gainsville, pp. 113–138.Google Scholar
  55. Graham, J.H., Leonard, R.T. and Menge, J.A. 1981. Membrane-mediated decrease in root exudation responsible for phosphorus inhibition of vesicular-arbuscular mycorrhizae formation. Plant Physiol. 68: 548–552.PubMedCrossRefGoogle Scholar
  56. Grandison, G.S. and Cooper, K.M. 1986. Interaction of vesicular-arbuscular mycorrhiza and cultivars of alfalfa susceptible and resistant to Meloidogyne hapla. J. Nematol. 18: 141–149.PubMedGoogle Scholar
  57. Grandmaison, J., Olah, G.M., van Calsteren, M.R. and Furlan, V. 1993. Characterization and localizatioin of plant phenolics likely involved in the pathogen resistance expressed by endomycorrhizal roots. Mycorrhiza, 3: 155–164.CrossRefGoogle Scholar
  58. Green, S.K. and Deng, T.C. 1985. Effect of endomycorrhizal fungus, Glomus mosseae on soybean mosaic virus in soybean. Plant Protection Bulletin, Taiwan, 27: 353–358.Google Scholar
  59. Guillon, C., St-Arnaud, M., Hamel, C. and Jabaji-Hare, S.H. 2002. Differential and systemic alteration of defence-related gene transcript levels in mycorrhizal bean plants infected with Rhizoctonia solani. Canadian Journal of Botany, 80: 305–315.CrossRefGoogle Scholar
  60. Harison, M.J. and Dixon, R.A. 1993. Isoflavonoid accumulation and expression of defence gene transcripts during the establishment of vesicular-arbuscular mycorrhizal associations in roots of Medicago trunculata. Mole. Plant Microbe Interac. 6: 643–654.Google Scholar
  61. Heald, C.M., Bruton, B.D. and Davis, R.M. 1989. Influence of Glomus intraradices and soil phosphorus on Meloidogyne incognita infecting Cucumis melo. J. Nematol. 21: 69–73.PubMedGoogle Scholar
  62. Hedge, S.V. and Rai, P.V. 1984. Influence of Glomus fasciculatum on damping off of tomato. Current Science, 53: 588–589.Google Scholar
  63. Hussey, R.S. and Roncadori, R.W. 1982. Vesicular-arbuscular mycorrhiza may limit nematode activity and improve plant growth. Plant Dis. 66: 9–14.CrossRefGoogle Scholar
  64. Iqbal, S.H. and Nasim, G. 1988. IV. VA mycorrhiza as a deterrant to damping off caused by Rhizoctonia solani at defferent temperature regimes. Biologia Pakistan, 34: 215–221.Google Scholar
  65. Iqbal, S.H., Nasim, G. and Niaz, M. 1988. II. Role of vesicular-arbuscular mycorrhiza as a deterrent to damping off caused by Rhizoctonia solani in Brassica oleracea. Biologia Pakistan, 34: 79–84.Google Scholar
  66. Jain, R.K and Sethi, C.L. 1988a. Influence of endomycorrhizal fungi Glomus fasciculatum and G. epigaeus on penetration and development of Heterodera cajani on cowpea. Indian J. Nematology, 18: 89–93.Google Scholar
  67. Jain, R.K and Sethi, C.L. 1988b. Interaction between vesicular-arbuscular mycorrhiza, Meloidogyne incognita and Heterodera cajani on cowpea as influenced by time of inoculation. Indian J. Nematology, 18: 263–268.Google Scholar
  68. Jaizme-Vega, M.C., Tenoury, P., Pinochet, J. and Jaumot, M. 1997. Interaction between the root knot nematode Meloidogyne incognita and Glomus mosseae in banana. Plant and Soil, 196: 27–35.CrossRefGoogle Scholar
  69. Jabaji-Hare, S.H. and Stobbs, L.W. 1984. Electron-microscopic examination of tomato roots coinfected with Glomus sp. and tobacco mosaic virus. Phytopathology, 74: 277–279.Google Scholar
  70. Jalali, B.L. and Jalali, I. 1991. Mycorrhiza in plant disease control. In: “Handbook of applied Mycology” Vol. I: Soil and Plants (eds. Arora, D.K., Rai, B., Mukerji, K.G. and Knudsen G.R.) Marcel Dekker Inc. New York, pp. 131–154.Google Scholar
  71. Jalali, B.L., Chhabra, M.L. and Singh, R.P. 1990. Interaction between vesicular-arbuscular mycorrhiza endophyte and Macrophomina phaseolina in mungbean. Indian Phytopathology, 43: 527–530.Google Scholar
  72. Jayaram, J. and Kumar, D. 1995. Influence of mungbean yellow mosaic virus on mycorrhizal fungi associated with Vigna radiata var. PS 16. Indian Phytopathology, 48: 108–110.Google Scholar
  73. Karagiannidis, N., Bletsos, F. and Stavropoulos, N. 2002. Effect of Verticillium wilt (Verticillium dahliae Kleb.) and mycorrhiza (Glomus mosseae) on root colonization, growth and nutrient uptake in tomato and eggplant seedlings. Scientia Horticulturae, 94: 145–156.CrossRefGoogle Scholar
  74. Kasiamdari R.S., Smith, S.E., Smith, F.A. and Scott, E.S. 2002. Influence of the mycorrhizal fungus, Glomus coronatum and soil phosphorus on infection and disease caused by binucleate Rhizoctonia and Rhizoctonia solani on mung bean (Vigna radiata). Plant and Soil, 238: 235–244.CrossRefGoogle Scholar
  75. Krishna, K.R. and Bagyaraj, D.J. 1984. Phenols in mycorrhizal roots of Arachis hypogaea. Experientia, 40: 85–86.CrossRefGoogle Scholar
  76. Linderman, R.G. 1994. Role of VAM fungi in biocontrol. In: “Mycorrhiza and Plant Health” (eds. Pleger, F.L. and Linderman, R.G.), APS, St, Paul, pp. 1–26.Google Scholar
  77. Linderman, R.G. 2000. Effect of mycorrhizas on plant tolerance to diseases. In: “Arbuscular mycorrhizas: physiology and function”. (eds. Kapulnick, Y. and Douds Jr., D.D.), Kluwer Academic Press, pp. 345–366.Google Scholar
  78. Lingua, G., D’Agostino, G., Massa, N., Antosiano, M. and Berta, G. 2002. Mycorrhiza-induced differential response to a yellows disease in tomato. Mycorrhiza, 12: 191–198.CrossRefPubMedGoogle Scholar
  79. McGraw, A.C. and Schenck, N.C. 1981. Effect of two species of vesicular-arbuscular mycorrhizal fungi on the development of Fusarium wilt of tomato. Phytopathology, 71:894.Google Scholar
  80. Melo, I.S., Costa, C.P. and Silveria, A.P.D. 1985. Effect of vesicular-arbuscular mycorrhizae on aubergine wilt caused by Verticillium albo-atrum Reinke and Berth. Summ. Phytopathol. 11: 173–179.Google Scholar
  81. Meyer, J.R. and Linderman, R.G. 1986. Selective influence on populations of rhizosphererhizoplane bacteria and actinomycetes by mycorrhizas formed by Glomus fasciculatum. Soil Biol. Biochem. 18: 191–196.CrossRefGoogle Scholar
  82. Morandi, D. 1996. Occurrence of phytoalexins and phenolics compounds in endomycorrhizal interaction and their potential role in biological control. Plant and Soil, 185: 241–251.CrossRefGoogle Scholar
  83. Morandi, D. and Le Querre, J.L. 1991. Influence of nitrogen on accumulation of isosojagol (a newly detected coumestan in soybean) and associated isoflavonoids in roots and nodules of mycorrhizal and non-mycorrhizal soybean. New Phytol. 117: 75–79.CrossRefGoogle Scholar
  84. Mosse, B. 1973. Advances in the study of vesicular-arbuscular mycorrhiza. Ann. Rev. Phytopathol. 11: 171–196.CrossRefGoogle Scholar
  85. Mukerji, K.G. 1999. Mycorrhiza in control of plant pathogens: Molecular approaches. In: “Biotechnological approaches in biocontrol of plant pathogens”. (eds. Mukerji, K.G., Chamola, B.P. and Upadhyay, R.K), Kluwer Academic & Plenum Publishers, New York, pp. 135–155.Google Scholar
  86. Nagesh, M., Reddy, P.P., Kumar, M.V.V. and Nagaraju, B.M. 1999. Studies on correlation between Glomus fasciculatum spore density, root colonization and Meloidogyne incognita infection on Lycopersicum esculentum. Zeitschrift fur pflnzenkrankheiten und pflanzenschutz-Journal of Plant Disease and Protection, 106: 82–87.Google Scholar
  87. Nemec, S. 1974. Population of Endogone in strawberry fields in relation to root rot infection. Trans. Br. Mycol. Soc. 62: 45.CrossRefGoogle Scholar
  88. Nemec, S. and Myhre, D. 1984. Virus-Glomus etunicatum interactions in Citrus rootstocks. Plant Dis. 68: 311–314.CrossRefGoogle Scholar
  89. O’Bannon, J.H. and Nemec, S. 1979. The response of Citrus limon seedlings to a symbiont, Glomus etunicatum and a pathogen, Radopholus similis. J. Nematology, 11: 270–275.Google Scholar
  90. O’Bannon, J.H., Inserra, R.N., Nemec, S. and Vovlas, N. 1979. The influence of Glomus mosseae on Tylenchulus semipenetrans infected and uninfected Citrus limon seedlings. J. Nematology, 11: 247–250.Google Scholar
  91. Oliveira, A.A.R. and Zambolim, L. 1986. Interaction between the endomycorrhizal fungus Glomus etunicatum and the gall nematode M. javanica on beans with split roots. Fitopatologia Brasilera, 12:22–225.Google Scholar
  92. Osman, H.A., Korayem, A.M., Ameen, H.H. and Badr-Eldin, S.M.S. 1990. Interaction of root-knot nematode and mycorrhizal fungi on common bean Phaseolus vulgaris L. Anzeiger fur Schadlingskunde, Pflanzenschutz, Umweltschutz. 63: 129–131.CrossRefGoogle Scholar
  93. Pinochet, J., Calvet, C., Campprubi, A. and Fernandez, C. 1996. Interaction between migratory endoparasitic nematodes and arbuscular mycorrhizal fungi in perennial crops. A review. Plant Soil, 185:183–190.CrossRefGoogle Scholar
  94. Pozo, M.J., Cordier, C. and Dumas-Gaudot, E. 2002. Localized versus systemic effect of arbuscular mycorrhizal fungi on defence responses to Phytophthora infection in tomato plants. Journal of Experimental Botany, 53:525–534.CrossRefPubMedGoogle Scholar
  95. Prados-Ligero, A.M., Bascon-Fernandez, J., Calvet-Pios, C., Corpas-Hervias, C., Ruiz, A.L., Melero-Vara, J.M. and Basallote Ureba, M.J. 2002. Effect of different soil and clove treatments in the control of white rot of garlic. Annals of Applied Biology, 140: 247–253.CrossRefGoogle Scholar
  96. Ramirez, B.N. 1974. Influence of endomycorrhizae on the relationship of inoculum density of Phytophthora palmivora in soil to infection of papaya roots. MS thesis, Univ. Florida, Gainesville, 45p.Google Scholar
  97. Ramraj, B., Shanmugam, N. and Reddy, D.A. 1988. Biocontrol of Macrophomina root rot of cowpea and Fusarium wilt of tomato by VAM fungi. Mycorrhizae for Green Asia, Proc. First Asian Conf. On Mycorrhiza, Jan., 29–31, pp. 250–251.Google Scholar
  98. Rosendahl, S. 1985. Interaction between the vesicular-arbuscular mycorrhizal fungus Glomus fasciculatum and Aphanomyces euteiches root rot of peas (Pisum sativum). Phytopathol. 114: 31–40.CrossRefGoogle Scholar
  99. Rosendahl, C.N. and Rosendahl, S. 1990. The role of vesicular-arbuscular mycorrhiza in controlling damping off and growth reduction in cucumber caused by Pythium ultimum. Symbiosis, 9:363–366.Google Scholar
  100. Ross, J.P. 1972. Influence of Endogone mycorrhiza on Phytophthora rot of soybean. Phytopathol. 62:876–897.Google Scholar
  101. Safir, G. 1968. The influence of vesicular-arbuscular mycorrhiza on the resistance of onion to Pyrenochaeta terrestris. M.S. thesis, Univ. Illiinois, Urbana, 36p.Google Scholar
  102. Samara, A., Dumas-Gaudot, E., Gianinazzi-Pearson, V. and Gianinazzi, S. 1996. Studies of in vivo polypeptide synthesis in non-mycorrhizal and arbuscular-mycorrrhizal (Glomus mosseae) pea roots. In: “Mycorrhizas in integrated systems from genes to plant development”. (eds. Azcon-Aguilar, C. and Barea, J.M.), Kluwer Academic Publishers, Dordrecht, The Netherland, pp. 263–266.Google Scholar
  103. Schenck, N.C. and Kellam, M.K. 1978. The influence of vesicular-arbuscular mycorrhizae on disease development. Fla. Agric. Exp. Stn. Tech. Bull. 798.Google Scholar
  104. Schonbeck, F. 1979. Endomycorrhizas in relation to plant diseases. In: “Soil-Borne Plant Pathogens”. (eds. Schippers, B. and Gama, W.) Academic Press, New York, pp. 271–280.Google Scholar
  105. Schonbeck, F. 1980. Endomycorrhiza: Ecology, function and phytopathological aspects. Forum Microbiol. 3: 90–96.Google Scholar
  106. Schonbeck, F. and Dehne, H.W. 1981. Mycorrhiza and plant health. Gesunde pflanzen, 33:186–190.Google Scholar
  107. Schonbeck, F. and Schinzer, U. 1972. Investigations on the influence of endotrophic mycorrhiza on TMV lesion formation in Nicotiana tabacum L. var. xanthi. Phytopathol. Z. 73: 78–80.CrossRefGoogle Scholar
  108. Schonbeck, F. and Spengler, G. 1978. Detection of TMV in mycorrhizal cells of tomato by immunofluoresecence. Phytopathol. Z. 94: 84–86.CrossRefGoogle Scholar
  109. Secilia, J. and Bagyaraj, D.J. 1987. Bacteria and actinomycetes associated with pot cultures of vesicular-arbuscular mycorrhizas. Canadian J. Microbiology, 33:1069–1073.Google Scholar
  110. Sharma, A.K., Johri, B.N. and Gianinazzi, S. 1992. Vesicular-arbuscular mycorrhizae in relation to plant disease-review. World Journal of Microbiology and Biotechnology, 8: 559–563.CrossRefGoogle Scholar
  111. Shaul, O, Galili, S., Volpin, H., Ginzberg, I., Elad, Y., Chet, I. And Kapulnik, Y. 1999. Mycorrhiza-induced changes in disease severity and PR protein expression in tobacco leaves. Mol. Plant-Microbe Interact., 12: 1000–1007.PubMedCrossRefGoogle Scholar
  112. Sikora, R.A. and Schonbeck, F. 1975. Effect of vesicular-arbuscular mycorrhiza (Endogone mosseae) on the population dynamics of the root knot nematodes Meloidogyne incognita and M. hapla. 8th Int. Cong. Plant Prot., 5:158–166.Google Scholar
  113. Singh, R., Adholeya, A. and Mukerji, K.G. 2000. Mycorrhiza in control of soil borne pathogens. In: “Mycorrhizal Biology” (eds. Mukerji, K.G., Chamola, B.P. and Jagjit Singh), Kluwer Academic Publishers, NY, pp.171–196.Google Scholar
  114. Singh, K., Varma, A.K. and Mukerji, K.G. 1987. Vesicular-arbuscular mycorrhizal fungi in diseased and healthy plants of Vicia faba. Acta Botanica Indica, 15: 304–310.Google Scholar
  115. Sitaramaiah, K. and Sikora, R.A. 1981. Influence of the endomycorrhizal fungus Glomus mosseae on Rotylenchulus reniformis penetration and development on bush bean, cucumber and musk melon. Med. Fac. Landbouww, Rijksuniv. Gent. 46: 695–702.Google Scholar
  116. Sitaramaiah, K. and Sikora, R.A. 1982. Effect of mycorrhizal fungus, Glomus fasciculatum on the host parasite relationship of Rotylenchus reniformis in tomato. Nematologica, 28: 412–419.CrossRefGoogle Scholar
  117. Smith, F. W. 2002. The phosphate uptake mechanism. Plant and Soil, 245: 105–114.CrossRefGoogle Scholar
  118. Smith, G.S. 1987. Interactions of nematodes with mycorrhizal fungi. In: “Vistas on Nematology” (eds. Veech, J.A. and Dickon, D.W.), Soc. Nematol., Hyattsville, Md., pp. 292–300.Google Scholar
  119. Smith, G.S. and Kaplan, D.T. 1988. Influence of mycorrhizal fungus phosphorus and burrowing nematode interactions on growth of rough lemon seedlings. J. Nematol. 20:539–544.PubMedGoogle Scholar
  120. Smith, G.S., Roncadori, R.W. and Hussey, R.S. 1986. Interaction of endomycorrhizal fungi, superphosphate and Meloidogyne incognita on cotton in microplot and field studies. J. Nematology, 18: 208–214.Google Scholar
  121. Smith, S.E. and Gianinazzi-Pearson, V. 1988. Physiological interactions between symbionts in vesicular-arbuscular mycorrhizal plants. Annual Review of Plant Physiology and Molecular Biology, 39: 221–244.CrossRefGoogle Scholar
  122. St-Arnaud, M., Hamel, C., Vimard, B., Caron, M. and Fortin, J.A. 1995. Altered growth of Fusarium oxysporum f.sp. chrysanthemi in an in vitro dual culture system with the vesicular-arbuscular mycorrhizal fungus Glomus intraradices growing on Daucus carota transformed roots. Mycorrhiza, 5:431–438.Google Scholar
  123. Stinzi, A., Heitz, T., Prasad, V., Wiedemann-Meidinoglu, S., Kaufmann, S., Geoffroy, P., Legrand, M. and Pritig, B. 1993. Plant Pathogenesis-related proteins and their role in defence against pathogens. Biochimie, 75:687–706.CrossRefGoogle Scholar
  124. Torres-Barragan, A., Zavalta-Mejia, E., Gonzalez-Chavez and Ferrera-Cerrato, R. 1996. The use of arbuscular mycorrhizae to control onion white rot (Sclerotium cepivorum) under field conditions. Mycorrhiza, 6: 253–257.CrossRefGoogle Scholar
  125. Trotta, A., Varese, G.C., Gnavi, E., Fusconi, A., Sampo, S. and Berta, G. 1996. Interaction between the soil borne root pathogen Phytophthora nicotianae var. parasitica and the arbuscular mycorrhizal fungus Glomus mosseae in tomato plants. Plant Soil, 185: 199–209.CrossRefGoogle Scholar
  126. Umesh, K.C., Krishnappa, K. and Bagyaraj, D.J. 1988. Interaction of burrowing nematode, Radophilus similis and VA mycorrhiza, Glomus fasciculatum (Thaxt.) Gerd and Trappe in banana (Musa acuminata Colla.). Indian J. Nematology, 18:6–11.Google Scholar
  127. Utkhede, R.S. and Smith, E.M. 2000. Impact of chemical, biological and cultural treatments on the growth and yield of apple in replant-disease soil. Australian Plant Pathology, 29: 129–136.CrossRefGoogle Scholar
  128. Van Loon, L.C., Pierpoint, W.S., Boller, T. and Conejero, V. 1994. Recommendations for naming plant pathogenesis related proteins. Plant Mole. Biol. Repr. 12: 245–264.CrossRefGoogle Scholar
  129. Verdejo, S., Calvet, C. and Pinochet, J. 1990. Effect of mycorrhiza on kiwi infected by the nematodes Meloidogyne hapla and M. javanica. Buletin de Sanidad Vegetal, Plagas, 16:619–624.Google Scholar
  130. Vestberg, M., Palmujoki, H., Parikka, P. and Uosukainen, M. 1994. Effect of arbuscular mycorrhizas on crown rot (Phytophthora cactorum) in micropropagated strawberry plants. Agricultural Science in Finland, 3: 289–296.Google Scholar
  131. West, J.M. 1995. Soil phosphate status modifies response of mycorrhizal and non-mycorrhizal Senecio vulgaris L. to infection by the rust, Puccinia lagenophorae Cooke. New Phytol. 129: 107–116.CrossRefGoogle Scholar
  132. Whipps, J.M. 2001. Microbial interactions and biocontrol in the rhizosphere. Journal of experimental Botany, 52: 487–511.PubMedGoogle Scholar
  133. Yao, M.K., Tweddell, R.J. and Desilets, H. 2002. Effect of two vesicular-arbuscular mycorrhizal fungi on the growth of micropropagated potato plantlets and on the extent of disease caused by Rhizoctonia solani. Mycorrhiza, 12: 235–242.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Nikhat S. Naqvi
    • 1
  • S. A. M. H. Naqvi
    • 2
  1. 1.S.F.S CollegeNagpurIndia
  2. 2.National Research Centre for CitrusNagpurIndia

Personalised recommendations