Advertisement

Asymptotics of Laminated Shells. Membrane — Bending Coupling and Numerical Implementation

  • H. Ranarivelo
  • J. Sanchez-Hubert
Conference paper
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 113)

Abstract

In this paper, we give a method to compute the generalized elasticity coefficients including coupling terms which appear in thin shell theory when the material is heterogeneous. A new program to compute this coe icients is implemented in the finite element code Modulef. As an example we consider an inhibited bilayered thin shell with hyperbolic middle surface involving a composite material with unidirectional fibres. We observe that the presence of anisotropy modifies the quantitative results obtained for isotropic homogeneous material but not the qualitative trends of the solutions.

Keywords

Shell theory anisotropy numerical implementation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bernadou M., Méthodes ďéléments finis pour les problèmes de coques minces, Masson, Paris; 1994.Google Scholar
  2. [2]
    Caillerie D., Thin elastic and periodic plates, Math. Methods Appl. Sci., No 6, 1984, pp. 159–191.Google Scholar
  3. [3]
    Caillerie D. & Sanchez Palencia É., Elastic thin shells: asymptotic theory in the anisotropic and heterogeneous cases, Math. Models and meth. in Appl. Sci., vol. 5, No4, 1995, pp. 473–496.CrossRefMathSciNetGoogle Scholar
  4. [4]
    Caillerie D. & Sanchez Palencia É., A new kind of singular stiff problems and application to thin elastic shell, Math. models Meth. in Appl. Sci., vol. 5, 1995, pp. 47–66.CrossRefMathSciNetGoogle Scholar
  5. [5]
    Ciarlet P.G. & Paumier J.C., A justif ication of the Marguerre — von Karman equations, Comput. Mech, vol. 1, 1986, pp. 177–202.CrossRefGoogle Scholar
  6. [6]
    Karamian P., Sanchez-Hubert J. & Sanchez Palencia É, A model problem for boundary layers of thin elastic shells, Math. Modell. Num. Anal. 2000; 34: 1–30.CrossRefMathSciNetGoogle Scholar
  7. [7]
    Karamian P. & J. Sanchez-Hubert, Boundary layers in thin elastic shells with developable middle surface, European Journal of Mechanics A/Solids (to appear)Google Scholar
  8. [8]
    Karamain-Surville P., Sanchez-Hubert J., Sanchez Palencia É., Propagation of singularities and structure of layers in shells. Hyperbolic case, Computers and Structures, vol. 80, 2002, pp 747–768.CrossRefMathSciNetGoogle Scholar
  9. [9]
    Lekhnitskii S.G., Theory of elasticity of an anisotropic elastic body, Holden-Day series in mathematical physics, San Francisco, 1963Google Scholar
  10. [10]
    Ranarivelo H., Contribution à ľétude du comportement anisotrope de coque mince, thèse de ľUniversité de Caen, 2002.Google Scholar
  11. [11]
    Sanchez-Hubert J. & Sanchez Palencia É. Introduction aux méthodes asymptotiques et à ľhomogénéisation, Masson, 1992.Google Scholar
  12. [12]
    Sanchez-Hubert J. & Sanchez Palencia É. Coques élastiques minces: propriétés asymptotiques, Masson, 1997.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • H. Ranarivelo
    • 1
  • J. Sanchez-Hubert
    • 1
  1. 1.Laboratoire de Mécanique, Modélisation Mathématique et NumériqueUniversité de CaenCaenFrance

Personalised recommendations