Advertisement

Homogenized Stiffnesses of Periodic Fibre-Reinforced Composites

  • Julian Bravo-Castillero
  • Raúl Guinovart-Diaz
  • Reinaldo Rodriguez-Ramos
  • Federico J. Sabina
  • Oscar C. Valdiviezo-Mijangos
Conference paper
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 113)

Abstract

A two-phase fibre-reinforced composite is studied here, whose constituents are isotropic elastic arranged in a hexagonal array. The asymptotic homogenization method, applied to get the overall properties of this composite, yields exact closed-form solutions, which are amenable to a relatively easy computation. Limiting cases of rigid and empty fibres are considered. Hill’s universal relations follow from the formulae. The exact formulae explicitly display Avellaneda and Swart’s micro-structural parameters, which have a physical meaning, and provide formulae for them. A comparison between the hexagonal and square geometries is given.

Keywords

Fibre-reinforced composite effective properties homogenization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Christensen, R M (1991) Mechanics of Composite Materials. Malabar, Fl: Krieger.Google Scholar
  2. [2]
    Benveniste, Y (1987) Mech. Mat. 6, 147.CrossRefGoogle Scholar
  3. [3]
    Nemat-Nasser, S and Hori, M (1999) Micromechanics: Overall Properties of Heterogeneous Materials. Amsterdam: North-Holland.Google Scholar
  4. [4]
    Iwakuma, T and Nemat-Nasser, S (1983) Int. J. Solids Structures 16, 13.zbMATHGoogle Scholar
  5. [5]
    Luciano, R and Barbero, E J (1994) Int. J. Solids Structures 31, 2933.CrossRefzbMATHGoogle Scholar
  6. [6]
    Aboudi, J (1991) Mechanics of Composite Materials. A Unified Micromechanical Approach. Amsterdam: Elsevier.zbMATHGoogle Scholar
  7. [7]
    Bruno, O (1991) Proc. R. Soc. Lond. A 433, 353.MathSciNetCrossRefGoogle Scholar
  8. [8]
    Bensoussan, A, Lions, J L and Papanicolau, G (1978) Asymptotic Analysis for Periodic Structures. Amsterdam: North-Holland.zbMATHGoogle Scholar
  9. [9]
    Pobedrya, B E (1984) Mechanics of Composite Materials. Moscow: Moscow State University, in Russian.zbMATHGoogle Scholar
  10. [10]
    Bakhvalov, N S and Panasenko, G P (1989) Homogenization Averaging Processes in Periodic Media. Dordrecht, Kluwer.Google Scholar
  11. [11]
    Guinovart-Diaz, R, Bravo-Castillero, J, Rodriguez-Ramos. R and Sabina, F J (2001) J. Mech. Phys. Solids 49, 1445.CrossRefzbMATHGoogle Scholar
  12. [12]
    Rodriguez-Ramos, R, Sabina, F J, Guinovart-Diaz, R and Bravo-Castillero, J (2001) Mech. Mat. 33, 223.CrossRefGoogle Scholar
  13. [13]
    Hill, R (1964) J. Mech. Phys. Solids 12, 199.CrossRefMathSciNetGoogle Scholar
  14. [14]
    Avellaneda, M and Swart, P J (1998) J. Acoust. Soc. Am. 103, 1449.CrossRefGoogle Scholar
  15. [15]
    Tsai, S W and Hahn, H T (1980) Introduction to Composite Materials. Westport: Technomic, Westport.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Julian Bravo-Castillero
    • 1
    • 4
  • Raúl Guinovart-Diaz
    • 1
  • Reinaldo Rodriguez-Ramos
    • 1
  • Federico J. Sabina
    • 2
  • Oscar C. Valdiviezo-Mijangos
    • 3
    • 5
  1. 1.Facultad de Matemática y ComputaciónUniversidad de La HabanaHabana 4Cuba
  2. 2.Instituto de Investigaciones en Matemáticas Aplicadas y en SistemasUniversidad Nacional Autónoma de MéxicoMéxico, D.F.México
  3. 3.Posgrado en Ciencias de la TierraU.N.A.M., Ciudad UniversitariaMéxico, D.F.México
  4. 4.Campus Estado de México, División de Arquitectura e Ingenier’iaInstituto Tecnológico de Estudios Superiores de MonterreyAtizapánMéxico
  5. 5.Instituto Mexicano del PetróleoEje Central Lázaro CárdenasMéxico, D.F.México

Personalised recommendations