Advertisement

Localized Green’s Functions for a Two-Dimensional Periodic Material

  • C. G. Poulton
  • R. C. McPhedran
  • N. A. Nicorovici
  • L. C. Botten
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 113)

Abstract

We describe a method for the calculation of Green’s functions for an array of dielectric cylinders. The method is to first construct quasi-periodic Green’s functions, with Bloch vector kB. This function also obeys the appropriate electromagnetic boundary conditions on the surface of each cylinder. The Green’s function for a single source in the array can then be calculated by averaging the quasi-periodic result over the Brillouin zone.

Keywords

Green’s functions photonic crystals defects Bloch functions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Dowling, H. Everitt, and E. Yablonovitch, 2002. Photonic & Acoustic Band-Gap Bibliography (http://home.earthlink.net/jpdowling).
  2. [2]
    J. D. Joannopoulos, R. D. Meade, and J. N. Winn. Photonic Crystals: Molding the Flow of Light. Princeton University, New Jersey, 1995.Google Scholar
  3. [3]
    M. Agio and C.M. Soukoulis. Ministop bands in single-defect photonic crystal waveguides. Phys. Rev. E, 64:056603:056603:4, 2001.CrossRefGoogle Scholar
  4. [4]
    D. Cassagne, A. Barra, and C. Jouanin. Defects and diffraction in photonic crystals. Superlattices and microstructures, 25:343–346, 1999.CrossRefGoogle Scholar
  5. [5]
    S. S. M. Cheng, L.M. Li, C.T. Chan, and Z.Q. Zhang. Defect and transmission properties of two-dimensional quasiperiodic photonic band-gap sytems. Phys. Rev. B, 59:4091–4099, 1999.CrossRefGoogle Scholar
  6. [6]
    A. Figotin and V. Goren. Resolvent method for computation of localized defect modes of h-polarization in two-dimensional photonic crystals. Phys. Rev. E, 64:056623:1–056623:16, 2001.CrossRefMathSciNetGoogle Scholar
  7. [7]
    R. C. McPhedran, N. A. Nicorovici, L. C. Botten, and Ke-Da Bao. Green’s function, lattice sum and Rayleigh’s identity for a dynamic scattering problem, volume 96 of IMA Volumes in Mathematics and its Applications, pages 155–186. Springer-Verlag, New York, 1997.Google Scholar
  8. [8]
    M. Abramowitz and I. A. Stegun, editors. Handbook of Mathematical Functions, pages 355–433. Dover, New York, 1972.Google Scholar
  9. [9]
    R. C. McPhedran and D. H. Dawes. Lattice sums for an electromagnetic scattering problem. J. Electromagn. Waves Appl., 6:1327–1340, 1992.Google Scholar
  10. [10]
    V.V. V.V. Zalipaev, N.A. Movchan, C.G. Poulton, and R.C. McPhedran. Elastic waves and homogenization in oblique periodic structures. Proc. Roy. Soc. A, 458:1887–1912, 2002.CrossRefMathSciNetGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • C. G. Poulton
    • 1
  • R. C. McPhedran
    • 2
  • N. A. Nicorovici
    • 2
  • L. C. Botten
    • 3
  1. 1.High Frequency and Quantum Electronics LaboratoryUniversity of KarlsruheKarlsruheGermany
  2. 2.School of PhysicsUniversity of SydneyAustralia
  3. 3.School of Mathematical SciencesUniversity of TechnologySydneyAustralia

Personalised recommendations