Advertisement

Transverse Propagating Waves in Perturbed Periodic Structures

  • C. G. Poulton
  • S. Guenneau
  • A. B. Movchan
  • A. Nicolet
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 113)

Abstract

We present here an analysis of electromagnetic waves propagating through a doubly periodic array of inclusions which are not necessarily circular. A small perturbation to a circular boundary is introduced, and this can be used to derive the e ective boundary conditions for the perturbed inclusion. We examine the e ect of this perturbation on the dispersion curves for the material, and compare this with a finite element modelling of the perturbed structure.

Keywords

Bloch waves perturbation method eigenvalue problem photonic crystals finite element method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. Agmon, A. Douglis, L. Nirenberg, Estimates near the boundary for solutions of elliptic partial di erential equations satisfying general boundary conditions, I, Comm. Pure Appl. Math., 12 (1959), 623–727; II, Comm. Pure Appl. Math., 17 (1964), 35–92MathSciNetGoogle Scholar
  2. [2]
    P. Dular, C. Geuzaine, F. Henrotte and W. Legros, A general environment for the treatment of discrete problems and its application to the finite element method, IEEE Transactions on Magnetics 34 No. 5 (1998) 3395–3398, and see also the Internet address http://www.geuz.org.CrossRefGoogle Scholar
  3. [3]
    C. Kittel, Introduction to solid state physics, John Wiley and Sons, Seventh edition, (1996), 185.Google Scholar
  4. [4]
    Ph. Langlet, A.-C. Hladky-Hennion, J.-N. Decarpigny, Analysis of the propagation of plane acoustic waves in passive periodic materials using the finite element method, J. Acoust. Soc. Am., 98, No.5, Pt. 1 (1995), 2792–2800.CrossRefGoogle Scholar
  5. [5]
    K. M. Leung and Y.F. Liu, Full vector wave calculation of photonic band structures in face-centred cubic dielectric media, Phys. Rev. Lett., 65, (1990), 2646–2649.CrossRefGoogle Scholar
  6. [6]
    R. C. McPhedran and N. A. Nicorovici and L. C. Botten and Ke-Da Bao, Green’s function, lattice sums and Rayleigh’s identity for a dynamic scattering problem, IMA Volumes in Mathematics and its Applications, 96, Springer-Verlag, New York, (1997), 155–186.Google Scholar
  7. [7]
    B. Meys, Ph.D. Thesis, Université de Liège, (1999).Google Scholar
  8. [8]
    N. A. Nicorovici and R. C. McPhedran and L. C. Botten, Photonic band gaps for arrays of perfectly conducting cylinders, Phys. Rev. E, 52, (1995b), 1135–1145.CrossRefGoogle Scholar
  9. [9]
    J. B. Pendry and P. M. Bell, Transfer matrix techniques for electromagnetic waves, NATO ASI Series E:Applied Sciences, 315, Kluwer Dordrecht, (1996), 153.Google Scholar
  10. [10]
    L. N. Trefethen, D. Bau III, Numerical Linear Algebra, SIAM, Philadelphia, (1997).Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • C. G. Poulton
    • 1
  • S. Guenneau
    • 2
    • 4
  • A. B. Movchan
    • 2
  • A. Nicolet
    • 3
  1. 1.High Frequency and Quantum Electronics LaboratoryUniversity of KalrsruheKarlsruheGermany
  2. 2.Department of Mathematical SciencesUniversity of LiverpoolLiverpoolUK
  3. 3.Institut Fresnel, UMR 6133Faculté de St. JérômeMarseille Cedex 20France
  4. 4.Condensed Matter Theory Group, Blackett LaboratoryImperial CollegeLondonUK

Personalised recommendations