Vibrations of a Circular Cylinder in Oblique Incidence Revisited

  • J. Servant
  • S. Guenneau
  • A. B. Movchan
  • C. Poulton
Conference paper
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 113)


In this paper, we analyse the propagation of elastodynamic waves in a circular cylinder in the case of oblique incidence. We use a scattering matrix approach and derive an algebraic linear system which allows us to get a complete picture of the dispersion curves. This derivation is of the foremost importance, since it provides the right form for the algebraic system associated to a singular cylinder, basis of its generalisation to a doubly periodic array of circular cylinders.


Spectral analysis elastic scattering acoustic waveguides 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. D. Achenbach, Harmonic waves in waveguides, in Wave Propagation in Elastic Solids, ed. by H. A. Lauwerier and W. T. Koiter. North-Holland Publishing Company (1973), p. 240.Google Scholar
  2. [2]
    A. E. Armenéakas, Propagation of harmonic waves in composite circular-cylindrical rods, J. Acoust. Soc. Am., (1970), 47, p. 822–837.CrossRefGoogle Scholar
  3. [3]
    D. C. Gazis, Three-dimensional investigation of the propagation of waves in hollow circular cylinders. I. Analytical Foundation II. Numerical results, J. Acoust. Soc. Am., (1958), 31, p. 568–578.CrossRefMathSciNetGoogle Scholar
  4. [4]
    S. Guenneau, C. Poulton and A.B. Movchan, A spectral problem for conically propagating elastic waves through an array of cylindrical channels, C. R. Acad. Sci., series in Mechanics, Paris, (2002), 330, p. 491–497.Google Scholar
  5. [5]
    S. Guenneau and A. B. Movchan, Analysis of elastic band structures for oblique incidence, Archive for Rational Mechanics and Analysis, (to appear).Google Scholar
  6. [6]
    T. R. Meeker and A. H. Meitzler, Guided wave propagation in elongated cylinders and plates, in: Physical Acoustics I PART A, ed. by W. P. Mason. New York, Academic Press (1964), p. 130.Google Scholar
  7. [7]
    Y.H. Pao, R.D. Mindlin, Dispersion of flexural waves in an elastic, circular cylinder, Journal of Applied Mechanics, (1960), p. 513–520.Google Scholar
  8. [8]
    L. Pochammer, Ueber die Fortpflangzungsgeschwindigkeiten Kleiner Schwingungen in einem unbergrenzten isotropen Kreiscylinder, Zeitschrift fur Mathematik, (1876) 81, p. 324–336.Google Scholar
  9. [9]
    A.W Snyder, J.D. Love, Otical waveguide theory, chapman and hall (1983), New-York.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • J. Servant
    • 1
  • S. Guenneau
    • 2
    • 4
  • A. B. Movchan
    • 2
  • C. Poulton
    • 3
  1. 1.Ecole Supéerieure de Méecanique de MarseilleIMTMarseille Cedex 20France
  2. 2.Department of Mathematical SciencesUniversity of LiverpoolLiverpoolUK
  3. 3.High Frequency and Quantum Electronics LaboratoryUniversity of KalrsruheKarlsruheGermany
  4. 4.Condensed Matter Theory Group, Blackett LaboratoryImperial CollegeLondonUK

Personalised recommendations