Skip to main content

Soil Organic Matter Stability in Amazonian Dark Earths

  • Chapter
Book cover Amazonian Dark Earths

Summary and Conclusions

If human activities are indeed primarily responsible for the development of the high C contents in ADE, one might expect that cessation of these activities would result in reductions in organic matter content, and an eventual reversion to Ferralsols or whatever soil type makes up the surrounding context of Indian settlements. However, this appears not to be the case. The high SOM contents of ADE are remarkably persistent. This review showed that chemical recalcitrance of pyrogenic C is the main factor responsible for the high SOM stability of ADE. Physical protection of SOM within soil aggregates contributes only a minor part to SOM stability. Additionally, it was shown that not all SOM in ADE is stable. Instead, also a considerable part of SOM is readily mineralizable, thus providing plant nutrients and maintaining the nutrient cycle. This is strongly supported by the increased CEC of ADE also contributing to their sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alef, K. (1993). Bestimmung mikrobieller Biomasse. Eine kritische Betrachtung. Zeitschrift für Pflanzenernährung und Bodenkunde, 156, 109–114.

    CAS  Google Scholar 

  • Amato, M., & Ladd, J.N. (1992). Decomposition of 14C-labelled glucose and legume material in soils: Properties influencing the accumulation of organic residue C and microbial biomass C. Soil Biology and Biochemistry, 24, 455–464.

    Article  CAS  Google Scholar 

  • Amelung, W., Flach, K.W., & Zech, W. (1997). Climatic effects on soil organic matter composition in the Great Plains. Soil Science Society of America Journal, 61, 115–123.

    CAS  Google Scholar 

  • Amelung, W., Zech, W., Zhan, X., Follet, R.F., Tiessen, H., Knox, E., & Flach, K.W. (1998). Carbon, nitrogen, and sulfur pools in particle-size fractions as influenced by climate. Soil Science Society of America Journal, 62, 172–181.

    CAS  Google Scholar 

  • Balesdent, J., & Mariotti, A. (1996). Measurement of soil organic matter turnover using 13C natural abundance. In T.W. Boutton, & S. Yamasaki (Eds.), Mass Spectrometry of Soils (pp. 83–111). New York: Marcel Dekker.

    Google Scholar 

  • Boudot, J.P. (1992). Relative efficiency of complexed aluminium, noncrystalline aluminium hydroxide, allophane and imogolite in retarding the biodegradation of citric acid. Geoderma, 52, 29–39.

    Article  CAS  Google Scholar 

  • Christensen, B.T. (1992). Physical fractionation of soil and organic matter in primary particle-size and density separates. Advances in Soil Science, 20, 1–90.

    Google Scholar 

  • Christensen, B.T. (1996). Carbon in primary and secondary organo-mineral complexes. In M.R. Carter, & B.A. Stewart (Eds.), Structure and Organic Matter Storage in Agricultural Soils (pp. 97–165). Boca Raton, FL: Lewis Publishers.

    Google Scholar 

  • Denevan, W.M. (1996). A bluff model of riverine settlement in prehistoric Amazonia. Annals of the Association of American Geographers, 86, 654–681.

    Article  Google Scholar 

  • Durall, D.M., & Parkinson, D. (1987). Mineralization potential in surface minesoils of the labile and recalcitrant fractions of 14C-labelled timothy (Phleum pratense) litter. Soil Biology and Biochemistry, 19, 43–48.

    Article  CAS  Google Scholar 

  • Duxbury, J.M., Smith, M.S., & Doran, J.M. (1989). Soil organic matter as a source and sink of plant nutrients. In D.C. Coleman, J.M. Oades, & G. Uehara (Eds.), Dynamics of Soil Organic Matter in Tropical Ecosystems (pp. 33–67). Honolulu: University of Hawai Press.

    Google Scholar 

  • Elliott, E.T. (1986). Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils. Soil Science Society of America Journal, 50, 627–633.

    Google Scholar 

  • Fearnside, P.M., Graca, P.M.L., Nilho, N.L., Rodrigues, F.J.A., & Robinson, J.M. (1999). Tropical forest burning in Brazilian Amazonia: measurement of biomass loading, burning efficiency and charcoal formation at Altamira, Pará. Forest Ecology and Management, 123, 65–79.

    Article  Google Scholar 

  • Feller, C., & Beare, M.H. (1997). Physical control of soil organic matter dynamics in the tropics. Geoderma, 79, 69–116.

    Article  CAS  Google Scholar 

  • Francis, J.K., & Knowles, O.H. (2001). Age of A2 horizon charcoal and forest structure near Porto Trombetas, Para, Brazil. Biotropica, 33, 385–392.

    Google Scholar 

  • Glaser, B. (1999). Eigenschaften und Stabilität des Humuskörpers der Indianerschwarzerden Amazoniens. Bayreuther Bodenkundliche Berichte, 68.

    Google Scholar 

  • Glaser, B., Haumaier, L., Guggenberger, G., & Zech, W. (1998). Black carbon in soils: the use of benzenecarboxylic acids as specific markers. Organic Geochemistry, 29, 811–819.

    Article  CAS  Google Scholar 

  • Glaser, B., Balashov, E., Haumaier, L., Guggenberger, G., & Zech, W. (2000a). Black carbon in density fractions of anthropogenic soils of the Brazilian Amazon region. Organic Geochemistry, 31, 669–678.

    Article  CAS  Google Scholar 

  • Glaser, B., Turrión, M.B., Solomon, D., Ni, A., & Zech, W. (2000b). Soil organic matter pools in mountain soils of the Alay Range, Kyrgyzia, affected by deforestation. Biology and Fertility of Soils, 31, 407–413.

    Article  CAS  Google Scholar 

  • Glaser, B., Haumaier, L., Guggenberger, G., & Zech, W. (2001a). The Terra Preta phenomenon: a model for sustainable agriculture in the humid tropics. Naturwissenschaften, 88, 37–41.

    Article  CAS  PubMed  Google Scholar 

  • Glaser, B., Guggenberger, G., & Zech, W. (2001b). Black carbon in sustainable soils of the Brazilian Amazon region. In: R.S. Swift, & K.M. Spark (Eds.), Understanding and Managing Organic Matter in Soils, Sediments, and Waters (pp. 359–364). St. Paul MN: International Humic Substances Society.

    Google Scholar 

  • Glaser, B., Guggenberger, G., Haumaier, L., & Zech, W. (2001c). Persistence of soil orgnic matter in archaeological soils (Terra Preta) of the Brazilian Amazon region. In: R.M. Rees, B.C. Ball, C.D. Campbell, & C. A. Watson (Eds.), Sustainable Management of Soil Organic Matter (pp. 190–194). Wallingford, UK: CAB International.

    Google Scholar 

  • Glaser, B., Lehmann, J., Steiner, C., Nehls, T., Yousaf, M., & Zech, W. (2002). Potential of pyrolyzed organic matter in soil amelioration. International Soil Conservation Organization Conference. ISCC vol. III (pp. 423–527). Beijing, China: Ministry of Water Resources.

    Google Scholar 

  • Glaser, B., Guggenberger, G., & Zech, W. (2003). Organic chemistry studies on Amazonian Dark Earths. In J. Lehmann, D.C. Kern, B. Glaser, & W.I. Woods (Eds.), Amazonian Dark Earths: Origin, Properties, Management (pp. 227–241). The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Golchin, A., Clarke, P., & Oades, J. M. (1996). The heterogeneous nature of microbial products as shown by solid-state 13C CP/MAS NMR Spectroscopy. Biogeochemistry, 34, 81–97.

    Article  Google Scholar 

  • Goldberg, E. D. (1985). Black Carbon in the Environment. New York: John Wiley.

    Google Scholar 

  • Guggenberger, G., Christensen, B. T. and Zech, W. (1994). Land-use effects on the composition of organic matter in particle-size separates of soil: I. Lignin and carbohydrate signature. European Journal of Soil Science, 45, 449–458.

    CAS  Google Scholar 

  • Guggenberger, G., Zech, W., & Thomas, R.J. (1995). Lignin and carbohydrate alteration in particle-size separates of an Ferralsol under tropical pastures following native savanna. Soil Biology and Biochemistry, 27, 1629–1638.

    Article  CAS  Google Scholar 

  • Haider, K. (1992). Problems related to the humification processes in soils of temperate climates. In: G. Stotzky, & J. M. Bollag (Eds.), Soil Biochemistry (pp. 55–94). New York: Marcel Dekker.

    Google Scholar 

  • Hassink, J. (1994). Effects of soil texture and grassland management on soil organic C and N and rates of C and N mineralization. Soil Biolology and Biochemistry, 26, 1221–1231.

    Google Scholar 

  • Hassink, J., Bouwman, L.A., Zwart, K.B., Bloem, J., & Brussard, L. (1993). Relationship between soil texture, physical protection of organic matter, soil biota, and C and N mineralization in grassland soils. Geoderma, 57, 105–128.

    Article  CAS  Google Scholar 

  • Haumaier, L., & Zech, W. (1995). Black carbon — possible source of highly aromatic components of soil humic acids. Organic Geochemistry, 23, 191–196.

    Article  CAS  Google Scholar 

  • Heckenberger, M.J., Petersen, J.B., & Neves, E.G. (1999). Village size and permanence in Amazonia: Two archaeological examples from Brazil. Latin American Antiquity, 10, 353–376.

    Google Scholar 

  • Jenkinson, D.S., & Rayner, J.H. (1977). The turnover of soil organic matter in some of the Rothamsted classical experiments. Soil Science, 123, 298–305.

    CAS  Google Scholar 

  • Jenny, H. (1994). Factors of Soil Formation. New York: Dover.

    Google Scholar 

  • Kaiser, K., Eusterhues, K., Rumpel, C., & Kögel-Knabner, I. (2002). Stabilization of organic matter by soil minerals — investigations of density and particle-size fractions from two acid forest soils. Journal of Plant Nutrition and Soil Science, 165, 451–459.

    Article  CAS  Google Scholar 

  • Kaiser, K., & Zech, W. (2000). Sorption of dissolved organic nitrogen by acid subsoil horizons and individual mineral phases. European Journal of Soil Science, 51, 403–411.

    Article  CAS  Google Scholar 

  • Kögel, I. (1986). Estimation and decomposition pattern of the lignin component in forest humus layers. Soil Biology and Biochemistry, 18, 589–594.

    Google Scholar 

  • Ladd, N.J., & Amato, M. (1980). Studies of nitrogen immobilization and mineralization in calcareous soils — V. Formation and distribution of isotope-labelled biomass during deocmpostion of 14C-and 15N-labelled plant material. Soil Biology and Biochemistry, 12, 405–411.

    Article  Google Scholar 

  • Laurance, W.F., Fearnside, P.M., Laurance, S.G., Delamonica, P., Lovejoy, T.E., Rankin-de Merona, J.M., Chambers, J.Q., & Gascon, C. (1999). Relationship between soils and Amazon forest biomass: a landscape-scale study. Forest Ecology and Management, 118, 127–138.

    Article  Google Scholar 

  • Lehmann, J., Kern, D.C., German, L.A., McCann, J., Martins, G.C., & Moreira, A. (2003). Soil fertility and production potential. In J. Lehmann, D.C. Kern, B. Glaser, & W.I. Woods (Eds.), Amazonian Dark Earths: Origin, Properties, Management (pp. 105–124). The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Miltner, A., & Zech, W. (1997). Effects of minerals on the transformation of organic matter during simulated fire-induced pyrolysis. Organic Geochemistry, 26, 175–182.

    Article  CAS  Google Scholar 

  • Neufeldt, H. (1998). Land-use effects on soil chemical and physical properties of Cerrado Ferralsols. Bayreuther Bodenkundliche Berichte, 59.

    Google Scholar 

  • Oades, J.M. (1988). The retention of organic matter in soils. Biogeochemistry, 5, 35–70.

    Article  CAS  Google Scholar 

  • Oades, J.M. (1989). An introduction to organic matter in mineral soils. In J.B. Dixon, & S.B. Weed (Eds.), Minerals in Soil Environments (pp. 89–159). Madison, WI: Soil Science Society of America Publishers Inc.

    Google Scholar 

  • Parton, W.J., Schimel, D.S., Cole, C.V., & Ojima, D.S. (1987). Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Science Society of America Journal, 51, 1173–1179.

    CAS  Google Scholar 

  • Ross, S.M. (1993). Organic matter in tropical soils: current conditions, concerns and prospects for conservation. Progress in Physical Geography, 17, 265–305.

    Google Scholar 

  • Saldarriaga, J.G., & West, D.C. (1986). Holocene fires in the northern Amazon basin. Quaternary Research, 26, 358–366.

    Article  Google Scholar 

  • Sanchez, P.A., & Logan, T. (1992). Myths and science about the chemistry and fertility of soils in the tropics. In R. Lal, & P. A. Sanchez (Eds.), Myths and Science of Soils of the Tropics. SSSA Special Publication No 29 (pp. 35–46). Madison, WI: Soil Science Society of America, American Society of Aronomy.

    Google Scholar 

  • Schmidt, M.W.I., Skjemstad, J.O., Gehrt, E., & Kögel-Knabner, I. (1999). Charred organic carbon in German chernozemic soils. European Journal of Soil Science, 50, 351–365.

    Google Scholar 

  • Schmidt, M.W.I., & Noack, A.G. (2000). Black carbon in soils and sediments: Analysis, distribution, implications, and current challenges. Global Biogeochemical Cycles, 14, 777–793.

    Article  CAS  Google Scholar 

  • Schmidt, M.W.I., Skjemstad, J.O., Czimczik, C., Glaser, B., Prentice, K.M., & Kuhlbusch, T.A.J. (2001). Comparative analysis of black carbon in soils. Global Biogeochemical Cycles, 15, 163–167.

    Article  CAS  Google Scholar 

  • Schnitzer, M. (1978). Humic substances: chemistry and reactions. In M. Schnitzer, & S. U. Khan (Eds.), Soil Organic Matter (pp. 1–64). Amsterdam: Elsevier.

    Google Scholar 

  • Shaymukhametov, M.S., Titova, N.A., Travnikova, L.S., & Labenets, Y.M. (1984). Use of physical fractionation methods to characterize soil organic matter. Soviet Soil Science, 16, 117–128.

    Google Scholar 

  • Six, J., Elliot, E.T., & Paustian, K. (1999). Aggregate and SOM dynamics under conventional and no-tillage systems. Soil Science Society of America Journal, 62, 1350–1358.

    Google Scholar 

  • Six, J., Carpentier, A., van Kessel, C., Merckx, R., Harris, D., Horwath, W. R., & Lüscher, A. (2001). Impact of elevated CO2 on soil organic matter dynamics as related to changes in aggregate turnover and residue quality. Plant and Soil, 234, 27–36.

    Article  CAS  Google Scholar 

  • Six, J., Feller, C., Denef, K., Ogle, S. M., & Sa, d. M. J. C. (2002). Soil organic matter, biota and aggregation in temperate and tropical soils — effects of no-tillage. Agronomie, 22, 755–775.

    Article  Google Scholar 

  • Skjemstad, J.O., Clarke, P., Taylor, J.A., Oades, J.M., & McClure, S.G. (1996). The chemistry and nature of protected carbon in soil. Australian Journal of Soil Research, 34, 251–271.

    Article  CAS  Google Scholar 

  • Smith, J.L., Schnabel, R.R., McNeal, B.L., & Campbell, G.S. (1980). Potential errors in the first-order model for estimating soil nitrogen mineralization potentials. Soil Science Society of America Journal, 44, 996–1000.

    CAS  Google Scholar 

  • Sollins, P., Homann, P.S., & Caldwell, B.A. (1996). Stabilization and destabilization of soil organic matter: mechanisms and controls. Geoderma, 74, 65–105.

    Article  Google Scholar 

  • Sombroek, W.G. (1966). Amazon Soils. A Reconnaissance of the Soils of the Brazilian Amazon Region, Wageningen: Verslagen van Landbouwkundige Onderzoekingen.

    Google Scholar 

  • Sombroek, W.G., Nachtergaele, F.O., & Hebel, A. (1993). Amounts, dynamics and sequestering of carbon in tropical and subtropical soils. Ambio, 22, 417–426.

    Google Scholar 

  • Sorensen, L.H. (1972). Stabilization of newly formed amino acid metabolites in soil by clay minerals. Soil Science, 114, 5–11.

    Google Scholar 

  • Stevenson, F.J. (1994). Humus Chemistry. New York: Wiley.

    Google Scholar 

  • Tiessen, H., Cuevas, E., & Chacon, P. (1994). The role of soil organic matter in sustaining soil fertility. Nature, 371, 783–785.

    Article  CAS  Google Scholar 

  • Turrión, M.B., Glaser, B., & Zech, W. (2002). Effects of deforestation on contents and distribution of amino sugars within particle-size fractions of mountain soils. Biology and Fertility of Soils, 35, 49–53.

    Google Scholar 

  • Whitmore, T.C. (1993). Tropische Regenwälder. Eine Einführung. Heidelberg: Spectrum Academischer Verlag.

    Google Scholar 

  • Woods, W.I., & McCann, J.M. (1999). The anthropogenic origin and persistence of Amazonian dark earths, The Yearbook of the Conference of Latin American Geographers, 25, 7–14.

    Google Scholar 

  • Zech, W., Pabst, E., & Bechtold, G. (1979). Analytische Kennzeichnung der Terra preta do indio. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft, 29, 709–716.

    Google Scholar 

  • Zech, W., Haumaier, L., & Hempfling, R. (1990). Ecological aspects of soil organic matter in tropical land use. In P. McCarthy, C.E. Clapp, R.L. Malcolm, & P.R. Bloom (Eds.), Humic Substances in Soil and Crop Sciences. Selected Readings (pp. 187–202). Madison WI: American Society of Agronomy and Soil Science Society of America.

    Google Scholar 

  • Zech, W., Senesi, N., Guggenberger, G., Kaiser, K., Lehmann, J., Miano, T. M., Miltner, A., & Schroth, G. (1997). Factors controlling humification and mineralization of soil organic matter in the tropics. Geoderma, 79, 117–161.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

Glaser, B., Guggenberger, G., Zech, W., Ruivo, M.D.L. (2003). Soil Organic Matter Stability in Amazonian Dark Earths. In: Lehmann, J., Kern, D.C., Glaser, B., Wodos, W.I. (eds) Amazonian Dark Earths. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2597-1_8

Download citation

  • DOI: https://doi.org/10.1007/1-4020-2597-1_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1839-8

  • Online ISBN: 978-1-4020-2597-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics