Skip to main content

Migration Disorders and Epilepsy

  • Chapter
Brain Damage and Repair
  • 345 Accesses

Summary

Normal development of the cerebral cortex requires radial migration of cortical neurons from the ventricular zone towards the pial surface. During recent years new insights into the different steps of cortical layer formation have been gained from the study of genetic disorders in humans and from the investigation of spontaneous or engineered mouse mutants. From these studies individual molecules have been identified which are crucially involved in the different steps of migration, i.e. migration onset, the actual migration along radial glial fibers and neuronal positioning. Here we will review current knowledge of the molecular pathways governing correct cortical layer formation which is a prerequisite for normal brain function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angevine, J. B., & Sidman, R. L. (1961) Autoradiographic study of cell migration during histogenesis of the cerebral cortex in the mouse. Nature, 192, 766–768.

    Article  PubMed  Google Scholar 

  • Armstrong, D. D. (1993) The neuropathology of temporal lobe epilepsy. J Neuropath Exp Neurol, 52, 433–443.

    Article  PubMed  CAS  Google Scholar 

  • Blümcke, I., Beck, H., Suter, B., Hoffmann, D., Fodisch, H. J., Wolf, H. K., Schramm, J., Elger, C.E., & Wiestler, O. D. (1999) An increase of hippocampal calretinin-immunoreactive neurons correlates with early febrile seizures in temporal lobe epilepsy. Acta Neuropathol, 97, 31–39.

    Article  PubMed  Google Scholar 

  • Caviness, V. S., Jr., & Sidman, R. L. (1973) Time of origin of corresponding cell classes in the cerebral cortex of normal and reeler mutant mice: an autoradiographic analysis. J Comp Neurol, 148, 141–151.

    Article  PubMed  Google Scholar 

  • Coulin, C., Drakew, A., Frotscher, M., & Délier, T. (2001) Stereological estimates of total neuron numbers in the hippocampus of adult reeler mutant mice: Evidence for an increased survival of Cajal- Retzius cells. J Comp Neurol, 439, 19–31.

    Article  PubMed  CAS  Google Scholar 

  • Crespel, A., Coubes, P., Rousset, M., Alonso, G., Bockaert, J., Baldy-Moulinier, M., & Lerner-Natoli, M. (2002) Immature-like astrocytes are associated with dentate granule cell migration in human temporal lobe epilepsy. Neurosci Lett, 330, 114–118.

    Article  PubMed  CAS  Google Scholar 

  • D’Arcangelo, G., Miao, G. G., Chen, S. C., Soares, H. D., Morgan, J. I., & Curran, T. (1995) A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature, 374, 719–723.

    Article  PubMed  Google Scholar 

  • D’Arcangelo, G., Nakajima, K., Miyata, T., Ogawa, M., Mikoshiba, K., & Curran, T. (1997) Reelin is a secreted glycoprotein recognized by the CR-50 monoclonal antibody. J Neurosci, 17, 23–31.

    PubMed  Google Scholar 

  • D’Arcangelo, G., Homayouni, R., Keshvara, L., Rice, D. S., Sheldon, M., & Curran, T. (1999) Reelin is a ligand for lipoprotein receptors. Neuron, 24, 471–479.

    Article  PubMed  Google Scholar 

  • Des Portes, V., Pinard, J. M., Billuart, P., Vinet, M. C., Koulakoff, A., Carrie, A., Gelot, A., Dupuis, E., Motte, J., Berwald-Netter, Y., Catala, M., Kahn, A., Beldjord, C., & Chelly, J. (1998) A novel CNS gene required for neuronal migration and involved in X-linked subcortical laminar heterotopia and lissencephaly syndrome. Cell 92, 51–61.

    Article  PubMed  Google Scholar 

  • Drakew, A., Délier, T., Heimlich, B., Gebhardt, C., Del Turco, D., Tielsch, A., Förster, E., Herz, J., & Frotscher, M. (2002) Dentate granule cells in reeler mutants and VLDLR and ApoER2 knockout mice. Exp Neurol, 176, 12–24.

    Article  PubMed  CAS  Google Scholar 

  • Eksioglu, Y.Z., Scheffer, I. E., Cardenas, P., Knoll, J., DiMario, F., Ramsby, G., Berg, M., Kamuro, K., Berkovic, S. F., Duyk, G. M., Parisis, J., Huttenlocher, P. R., & Walsh, C. A. (1996) Periventricular heterotopia: An X-linked dominant locus causing aberrant cerebral cortical development. Neuron, 16, 77–87.

    Article  PubMed  CAS  Google Scholar 

  • Förster, E., Tielsch, A., Saum, B., Weiss, K. H., Johanssen, C., Graus-Porta, D., Müller, U., & Frotscher, M. (2002) Reelin, disabled 1, and ßi integrins are required for the formation of the radial glial scaffold in the hippocampus. Proc Natl Acad Sci USA, 99, 13178–13183.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Fox, J. W., Lamberti, E. D., Eksioglu, Y. Z., Hong, S. E., Feng, Y., Graham, D. A., Scheffer, I. E., Dobyns, W. B., Hirsch, B. A., Radtke, R. A., Berkovic, S. F., Huttenlocher, P. R., & Walsh, C. A. (1998) Mutations in filamin 1 prevent migration of cerebral cortical neurons in human periventricular heterotopia. Neuron, 21, 1315–1325.

    Article  PubMed  CAS  Google Scholar 

  • Freiman, T. M., Gimbel, K., Honegger, J., Volk, B., Zentner, J., Frotscher, M., & Délier, T. (2002) Anterograde tracing of human hippocampus in vitro- a neuroanatomical tract tracing technique for the analysis of local fiber tracts in human brain. J Neurosci Methods, 120, 95–10.

    Article  PubMed  Google Scholar 

  • Frotscher, M. (1998) Cajal-Retzius cells, Reelin and the formation of layers. Curr Opin Neurobiol, 8, 570–575.

    Article  PubMed  CAS  Google Scholar 

  • Frotscher, M., Haas, C. A., & Förster, E. (2003) Reelin controls granule cell migration in the dentate gyrus by acting on the radial scaffold. Cereb Cortex, 13, 634–640.

    Article  PubMed  Google Scholar 

  • Gambello, M. J., Darling, D. L., Yingling, J., Tanaka, T., Gleeson, J. G., & Wynshaw-Boris, A. (2003) Multiple does-dependent effects of Lisi on cerebral cortical development. J Neurosci, 23, 1719–1929.

    PubMed  CAS  Google Scholar 

  • Gebhardt, C., del Turco, D., Drakew, A., Tielsch, A., Herz, J., Frotscher, M., & Deller, T. (2002) Abnormal positioning of granule cells alters afferent fiber distribution in the mouse fascia dentata: Morphologic evidence from reeler, apolipoprotein E receptor 2-, and very low density lipoprotein receptor knockout mice. J Comp Neurol, 445, 278–292.

    Article  PubMed  Google Scholar 

  • Gleeson, J. G., Lin, P. T., Flanagan, L. A., & Walsh, C. A. (1999) Doublecortin is a microtubule-associated protein and is expressed widely by migrating neurons. Neuron, 23, 257–271.

    Article  PubMed  CAS  Google Scholar 

  • Haas, C. A., Deller, T., Krsnik, Z., Tielsch, A., Woods, A., & Frotscher, M. (2000) Entorhinal cortex lesion does not alter reelin mRNA expression in the dentate gyrus of young and adult rats. Neuroscience, 97, 25–31.

    Article  PubMed  CAS  Google Scholar 

  • Haas, C. A., Dudeck, O., Kirsch, M., Huszka, C., Kann, G., Pollak, S., Zentner, J., & Frotscher, M. (2002) Role for reelin in the development of granule cell dispersion in temporal lobe epilepsy. J Neurosci, 22, 5797–5802.

    PubMed  CAS  Google Scholar 

  • Hattori, M., Adachi, H., Tsujimoto, M., Arai, H., & Inoue, K. (1994) Miller-Dieker lissencephaly gene encodes a subunit of brain platelet-activating factor acetylhydrolase. Nature, 370, 216–218.

    Article  PubMed  CAS  Google Scholar 

  • Hiesberger, T., Trommsdorf, M., Howell, B. W., Goffinet, A., Mumby, M. C., Cooper, J. A., & Herz, J. (1999) Direct binding of Reelin to VLDL receptor and ApoE receptor 2 induces tyrosine phosphorylation of disabled-1 and modulates tau phosphorylation. Neuron, 24, 481–89.

    Article  PubMed  CAS  Google Scholar 

  • Hirotsune, S., Fleck, M., Gambello, M, Bix, G., Chen, A., Clark, G., Ledbetter, D., McBain, C., & Wynshaw-Boris, A. (1998) Graded reduction of Pafahlbl (Lisi) activitiy results in neuronal migration defects and early embryonic lethality. Nature Genet, 19, 333–339.

    Article  PubMed  CAS  Google Scholar 

  • Hirotsune, S., Takahare, T., Sasaki, N., Hirosè, K., Yoshiki, A., Ohashi, T., Kusakabe, M., Murakami, Y., Muramatsu, M., Watanabe, S., Nakao, K., Katsuki, M., & Hayashizaki, Y. (1995) The reeler gene encodes a protein with an EGF-like motif expressed by pioneer neurons. Nature Genet, 10, 77–83.

    Article  PubMed  CAS  Google Scholar 

  • Houser, C. R. (1990) Granule cell dispersion in the dentate gyrus of humans with temporal lobe epilepsy. Brain Res, 535, 195–204.

    Article  PubMed  CAS  Google Scholar 

  • Magdaleno, S., Keshvara, L., & Curran, T. (2002) Rescue of ataxia and preplate splitting by ectopic expression of reelin in reeler mice. Neuron, 33, 573–586.

    Article  PubMed  CAS  Google Scholar 

  • Mathern, G. W., Babb, T. L., & Armstrong, D. L. (1997) Hippocampal sclerosis. Engel, J., Pedley, T. A. (Eds.) Epilepsy: A comprehensive textbook. Philadelphia: Lippincott-Raven, p. 133–155.

    Google Scholar 

  • Nagano, T., Yoneda, T., Hatanaka, Y., Kubota, C., Murakami, F., & Sato, M. (2002) Filamin A- interacting protein (FILIP) regulates cortical cell migration out of the ventricular zone. Nature Cell Biol, 4, 495–501.

    PubMed  CAS  Google Scholar 

  • Parent, J. M., Yu, T. W., Leibowitz, R. T., Geschwind, D. H., Sloviter, R. S., & Lowenstein, D. H. (1997) Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J Neurosci, 17, 3727–3738.

    PubMed  CAS  Google Scholar 

  • Pinard, J. M., Motte, J., Chiron, C., Brian, R., Andermann, E., & Dulac, O. (1994) Subcortical laminar heterotopia and lissencephaly in two families: a single X linked dominant gene. J Neurol Neurosurg Psychiatr, 57, 914–920.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rakic, P., & Caviness, V. S., Jr. (1995) Cortical development: view from neurological mutants two decades later. Neuron, 14, 1101–1104.

    Article  PubMed  CAS  Google Scholar 

  • Reiner, O., Carrozzo, R., Shen, Y., Wehnert, M., Faustinella, F., Dobyns, W. B., Caskey, C. T., & Ledbetter, D. H. (1993) Isolation of a Müller-Dieker lissencephaly gene containing G protein beta- subunit-like repeats. Nature, 364, 714–721.

    Article  Google Scholar 

  • Rice, D. S., Sheldon, M., l’Arcangelo, G., Nakajima, K., Goldowitz, D., & Curran, T. (1998) Disabled-1 acts downstream of reelin in a signaling pathway that controls laminar organization in the mammalian brain. Development, 125, 3119–3729.

    Google Scholar 

  • Rice, D. S., & Curran, T. (2001) Role of reelin signaling pathway in the central nervous system development. Ann Rev Neurosci, 24, 1005–1039.

    Article  PubMed  CAS  Google Scholar 

  • Sapir, T., Elbaum, M., & Reiner, O. (1997) Reduction of microtubule catastrophe events by LISI, platelet-activating factor acetylhydrolase subunit. EMBO J, 16, 6977–6984.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sheldon, M., Rice, D. S., d’Arcangelo, G., Yoneshima, H., Nakajima, M., Mikoshiba, K., Howell, B. W., Cooper, J. A., Goldowitz, D., & Curran, T. (1997) Scrambler and yotari disrupt the disabled gene and produce a reeler-like phenotype in mice. Nature, 389, 730–733.

    Article  PubMed  CAS  Google Scholar 

  • Sloviter, R. S. (1994) The functional organization of the hippocampal dentate gyrus and its relevance to the pathogenesis of temporal lobe epilepsy. Ann Neurol, 35, 640–654.

    Article  PubMed  CAS  Google Scholar 

  • Stossel, T. P., Condeelis, J., Cooley, L., Hartwig, J. H., Noegel, A., Schleicher, M., & Shapiro, S. S. (2001) Filamins as integrators of cell mechanics and signalling. Nature Rev Mol Cell Biol, 2, 138–145.

    Article  CAS  Google Scholar 

  • Trommsdorff, M., Gotthardt, T., Hiesberger, T., Shelton, J., Stockinger, W., Nimpf, J., Hammer, R.E., Richardson, J. A., & Herz, J. (1999) Reeler/disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 97, 689–701.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Haas, C.A., Frotscher, M. (2004). Migration Disorders and Epilepsy. In: Herdegen, T., Delgado-García, J. (eds) Brain Damage and Repair. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2541-6_25

Download citation

  • DOI: https://doi.org/10.1007/1-4020-2541-6_25

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6538-4

  • Online ISBN: 978-1-4020-2541-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics