Skip to main content

Regulation of the Intrinsic Growth Properties in Mammalian Neurons

  • Chapter
Brain Damage and Repair

Summary

Successful axon regeneration requires injured neurons upregulate a specific set of growth-associated genes needed to sustain long-distance neuritic elongation. Most of these genes are active during axonogenesis, but they are downregulated at the end of development following the appearance of environmental inhibitory cues. In the mammalian CNS, these cues include molecules issued by target cells or non-neuronal elements localized along the axon, including oligodendrocytes. The extrinsic inhibitory activity can be overcome when the neuronal expression of growth genes is enhanced or following manipulations that shift the balance between attractive and repulsive signalling pathways in the growth cone. Nevertheless, neutralisation of inhibitory molecules in the intact CNS induces aberrant axon growth, indicating that a major physiological function of these molecules is to restrain neuritic plasticity in order to maintain connection specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aigner, L., Arber, S., Kapfhammer, J.P., Laux, T., Schneider, C., Botteri, F. et al. (1995) Overexpression of the neural growth-associated protein GAP-43 induces nerve sprouting in the adult nervous system of transgenic mice. Cell, 83, 269–78.

    PubMed  CAS  Google Scholar 

  • Banner, L.R., & Patterson, P.H. (1994) Major changes in the expression of the mRNAs for cholinergic differentiation factor and its receptor after injury to the adult peripheral nerves and ganglia. Proceedings of the National Academy of Science (USA), 91, 7109–7113.

    CAS  Google Scholar 

  • Bareyre, F.M., Haudenshild, B., & Schwab, M.E. (2002) Long-lasting sprouting and gene expression changes induced by the monoclonal antibody IN-1 in the adult spinal cord. Journal of Neuroscience, 22, 7097–7110.

    PubMed  CAS  Google Scholar 

  • Bates, C.A., & Meyer, R.L. (1997) The neurite-promoting effect of laminin is mediated by different mechanisms in embryonic and adult regenerating mouse optic axons in vitro. Developmental Biology, 181, 91–101.

    CAS  Google Scholar 

  • Benowitz, L.I., Goldberg, D.E., Madsen, J.R., Soni, D., & Irwin, N. (1999) Inosine stimulates extensive axon collateral growth in the rat corticospinal tract after injury Proceedings of the National Academy of Science (USA), 96, 13486–13490.

    CAS  Google Scholar 

  • Berry, M., Carlile, J., & Hunter, A. (1996) Peripheral nerve expiants grafted into the vitreous body of the eye promote the regeneration of retinal ganglion cell axons severed in the optic nerve. Journal of Neurocytology, 25, 147–170.

    PubMed  CAS  Google Scholar 

  • Bisby, M.A. (1988) Dependence of GAP-43 (B50, Fl) transport on axonal regeneration in rat dorsal root ganglion neurons. Brain Research, 458, 157–161.

    PubMed  CAS  Google Scholar 

  • Blottner, D., & Herdegen, T. (1998) Neuroprotective Fibroblast Growth Factor type-2 down-regulates the c-Jun transcription factor in axotomized sympathetic preganglionic neurons of adult rat. Neuroscience, 82, 283–292.

    PubMed  CAS  Google Scholar 

  • Bravin, M., Savio, T., Strata, P., & Rossi, F. (1997) Olivocerebellar axon regeneration and target reinnervation following dissociated Schwann cell grafts in surgically injured cerebella of adult rats. European Journal of Neuroscience, 9, 2634–2649.

    PubMed  CAS  Google Scholar 

  • Bray, G.M., & Aguayo, A.J. (1989) Exploring the capacity of CNS neurons to survive injury, regrow axons and form new synapses in adult mammals. In F.J. Seil (Ed.) Neural Regeneration and Transplantation (pp. 67–78). New York: Alan Liss.

    Google Scholar 

  • Bomze, H.M., Bulsara, K.R., Iskandar, B.J., Caroni, P., & Skene, J.H.P. (2001) Spinal axon regeneration evoked by replacing two growth cone proteins in adult neurons. Nature Neuroscience, 4, 38–43.

    PubMed  CAS  Google Scholar 

  • Bonilla, I.E., Tanabe, K., & Strittmatter, S.M. (2002) Small proline-rich repeat protein 1A is expressed by axotomized neurons and promotes axonal outgrowth. Journal of Neuroscience, 22, 1303–1315.

    PubMed  CAS  Google Scholar 

  • Bormann, P., Zumsteg, V.M., Roth, L.W., & Reinhard, E. (1998) Target contact regulates GAP-43 and alpha-tubulin mRNA levels in regenerating retinal ganglion cells. Journal of Neuroscience Research, 52, 405–419.

    PubMed  CAS  Google Scholar 

  • Broude, E., McAtee, M., Kelley, M.S., & Bregman, B.S. (1997) c-Jun expression in adult rat dorsal root ganglion neurons: differential response after central or peripheral axotomy. Experimental Neurology, 148, 367–377.

    PubMed  CAS  Google Scholar 

  • Buffo, A., Holtmaat, A.J.D.G., Savio, T., Verbeek, S., Oberdick, J., Oestreicher, A.B. et al. (1997) Targeted overexpression of the neurite growth-associated protein B-50/GAP-43 in cerebellar Purkinje cells induces sprouting in response to axotomy, but does not allow axon regeneration into growth permissive transplants. Journal of Neuroscience, 17, 8778–8791.

    PubMed  CAS  Google Scholar 

  • Buffo, A., Zagrebelsky, M., Huber, A.B., Skerra, A., Schwab, M.E., Strata, P., et al. (2000). Application of neutralising antibodies against NI-35/250 myelin-associated neurite growth inhibitory proteins to the adult rat cerebellum induces sprouting of uninjured Purkinje cell axons. Journal of Neuroscience, 20, 2275–2286.

    PubMed  CAS  Google Scholar 

  • Cai, D., Shen, Y., De Bellard, M.E., Tang, S., & Filbin, M.T. (1999) Prior exposure to neurotrophins blocks inhibition of axonal regeneration by MAG and myelin via a cAMP-dependent mechanism. Neuron, 22, 89–101.

    PubMed  CAS  Google Scholar 

  • Cai, D., Deng, K., Mellado, W., Lee, J., Ratan, R.R., & Filbin, M.T. (2002) Arginase I and polyamines act downstream from cyclic AMP in overcoming inhibition of axonal growth in vitro. Neuron, 35, 711–719.

    PubMed  CAS  Google Scholar 

  • Carlstedt, T. (2000) Approaches permitting and enhancing motor neuron regeneration after spinal cord, ventral root, plexus and peripheral nerve injuries. Current Opinion in Neurology, 13, 683–686.

    PubMed  CAS  Google Scholar 

  • Caroni, P., Aigner, L., & Schneider, C. (1997) Intrinsic neuronal determinants locally regulate extrasynaptic and synaptic growth at the adult neuromuscular junction. Journal of Cell Biology, 136, 679–692

    PubMed Central  PubMed  CAS  Google Scholar 

  • Chen, P., Goldberg, D.E., Kolb, B., Lanser, M., & Benowitz, L.I. (2002) Inosine induces axonal rewiring and improves behavioral outcome after stroke. Proceedings of the National Academy of Science (USA), 99, 9031–9036.

    CAS  Google Scholar 

  • Colello, R.J., & Schwab, M.E. (1994) A role for oligodendrocytes in the stabilization of optic axon numbers. Journal of Neuroscience, 14, 6446–6452.

    PubMed  CAS  Google Scholar 

  • Condic, M.L. (2001). Adult neuronal regeneration induced by transgenic integrin expression. Journal of Neuroscience, 21, 4782–4788.

    PubMed  CAS  Google Scholar 

  • Curtis, R., Scherer, S.S., Somogyi, R., Adrian, K.M, Ip, Y.Y., Zhu, Y. et al. (1994) Retrograde axonal transport of LIF is increased by peripheral nerve injury: correlation with increased LIF expression in distal nerve. Neuron, 12, 191–204.

    PubMed  CAS  Google Scholar 

  • Davies, A.M. (1994) Intrinsic programmes of growth and survival in developing vertebrate neurons. Trends in Neurosciences, 17, 195–199.

    PubMed  CAS  Google Scholar 

  • Doster, K.S., Lozano, A.M., Aguayo, A.J., & Willard, M.B. (1991) Expression of the growth-associated protein GAP-43 in adult rat retinal ganglion cells following injury. Neuron, 6, 635–647.

    PubMed  CAS  Google Scholar 

  • Fawcett, J.W. (1992) Intrinsic neuronal determinants of regeneration. Trends in Neurosciences, 75, 5–8.

    Google Scholar 

  • Fawcett, J.W. (2001) Intrinsic control of regeneration and the loss of regenerative ability in development. In N.A. Ingoglia & M. Murray (Eds.). Axonal Regeneration in the Central Nervous System (pp. 161–183). New York, Basel: Marcel Dekker Inc.

    Google Scholar 

  • Fawcett, J.W., & Asher, R.A. (1999) The glial scar and central nervous system repair. Brain Research Bulletin, 49, 377–391.

    PubMed  CAS  Google Scholar 

  • Fernandes, K.J., & Tetzlaff, W.G. (2001) Gene expression in axotomized neurons: identifying intrinsic determinants of axonal growth. In N.A. Ingoglia & M. Murray (Eds.). Axonal Regeneration in the Central Nervous System (pp. 219–266). New York, Basel: Marcel Dekker Inc.

    Google Scholar 

  • Fernandes, K.J., Fan, D.-P., Tsui, B.J., Cassar, S.L., & Tetzlaff, W.G. (1999) Influence of the axotomy to cell body distance in rat rubrospinal and spinal motoneurons: different regulation of GAP-43, tubulins, and neurofilament-M. Journal of Comparative Neurology, 414, 495–510.

    PubMed  CAS  Google Scholar 

  • Fernandes, K.J., Kobayashi, N.R., Jasmin, B.J., & Tetzlaff, W.G. (1998) Acetylcholinesterase gene expression in axotomised rat facial motoneurons is differentially regulated by neurotrophins: correlation with trkB and trkC mRNA levels and isoforms. Journal of Neuroscience, 18, 9936–9947.

    PubMed  CAS  Google Scholar 

  • Gianola, S., & Rossi, F. (2001) Evolution of the Purkinje cell response to injury and regenerative potential during postnatal development of the rat cerebellum. Journal of Comparative Neurology, 430, 101–117.

    PubMed  CAS  Google Scholar 

  • Giehl, K.M., & Tetzlaff, W.G. (1996) BDNF and NT-3, but not NGF, prevent axotomy-induced death of rat corticospinal neurons in vivo. European Journal of Neuroscience, 8, 1167–1175.

    PubMed  CAS  Google Scholar 

  • Gold, B.G., Storm-Dickerson, T., & Austin, D.R. (1993) Regulation of the transcription factor c-Jun by nerve growth factor in adult sensory neurons. Neuroscience Letters, 154, 129–133.

    PubMed  CAS  Google Scholar 

  • Gold, B.G., Katoh, K., & Storm-Dickerson, T. (1995) The immunosuppressant FK506 increases the rate of axonal regeneration in rat sciatic nerve. Journal of Neuroscience, 15, 7509–7516.

    PubMed  CAS  Google Scholar 

  • Gold, B.G., Yew, J.Y., & Zeleny-Pooley, M. (1998) The immunosuppressant FK506 increases GAP-43 mRNA levels in axotomized sensory neurons. Neuroscience Letters, 241, 25–28.

    PubMed  CAS  Google Scholar 

  • Haas, C.A. & Frotscher, M. (1998) The role of NGF in axotomy-induced c-Jun expression in medial septal neurons. International Journal of Developmental Neuroscience, 16, 691–703.

    PubMed  CAS  Google Scholar 

  • Herdegen, T., Skene, J.H.P., & Bahr, M. (1997) The c-Jun transcription factor — bipotential mediator of neuronal death, survival and regeneration. Trends in Neurosciences, 20, 227–231.

    PubMed  CAS  Google Scholar 

  • Herdegen, T., Brecht, S., Mayer, B., Leah, J., Kummer, W., Bravo, R., et al. (1993) Long-lasting expression of JUN and KROX transcription factors and nitric oxide synthase in intrinsic neurons of the brain following axotomy. Journal of Neuroscience, 13, 4130–4145.

    PubMed  CAS  Google Scholar 

  • Hiebert, G.W., Dyer, J.K., Tetzlaff, W., & Stevees, J.D. (2000) Immunological myelin disruption does not alter expression of regeneration-associated genes in intact or axotomized rubro-spinal neurons. Experimental Neurology, 163, 149–156.

    PubMed  CAS  Google Scholar 

  • Hiebert, G.W., Khodarahmi, K., McGraw, J., Steeves, J.D., & Tetzlaff W. (2002) Brain-derived neurotrophic factor applied to the motor cortex promotes sprouting of corticospinal fibers but not regeneration into a peripheral nerve transplant. Journal of Neuroscience Research, 69, 160–168.

    PubMed  CAS  Google Scholar 

  • Higgins, G.A., Koh, S., Chen, K.S., & Gage, F.H. (1989) NGF induction of NGF receptor gene expression and cholinergic neuronal hypertrophy within the basal forebrain of the adult rat. Neuron, 3, 247–256.

    PubMed  CAS  Google Scholar 

  • Hökfelt, T., Zhang, X., & Wiesefeld-Hallin, Z. (1994) Messenger plasticity in primary sensory neurons following axotomy and its functional implications. Trends in Neurosciences, 17, 22–30.

    PubMed  Google Scholar 

  • Huber, A.B., & Schwab, M.E. (2000) Nogo-A, a potent inhibitor of neurite growth and regeneration. Biological Chemistry, 381, 407–419.

    PubMed  CAS  Google Scholar 

  • Huber, A.B., Weinmann, O., Brösamle, C., Oertle, T., & Schwab, M.E. (2002). Patterns of Nogo mRNA and protein expression in the developing and adult rat and after CNS lesions. Journal of Neuroscience, 22, 3553–3567

    PubMed  CAS  Google Scholar 

  • Hughes, P.E., Alexi, T., Hefti, F., & Knusel, B. (1997) Axotomized septal cholinergic neurons rescued by nerve growth factor or neurotrophin-4/5 fail to express the inducible transcription factor c-Jun. Neuroscience, 78, 1037–1049.

    PubMed  CAS  Google Scholar 

  • Hüll, M., & Bähr, M. (1994) Regulation of immediate early gene expression in retinal ganglion cells following axotomy and during regeneration through a peripheral nerve graft. Journal of Neurobiology, 25, 92–105.

    PubMed  Google Scholar 

  • Kapfhammer, J.P., & Schwab, M.E. (1994) Inverse patterns of myelination and GAP-43 expression in the adult CNS: neurite growth inhibitors as regulators of neuronal plasticity? Journal of Comparative Neurology, 340, 194–206.

    PubMed  CAS  Google Scholar 

  • Kenney, A.M., & Kocsis, J.D. (1998) Peripheral axotomy induces long-term c-Jun amino-terminal kinase-1 activation and activator protein-1 binding activity by c-Jun and JunD in adult dorsal root ganglia in vivo. Journal of ‘Neuroscience, 18, 1318–1328.

    CAS  Google Scholar 

  • Knöll, B., Isenmann, S., Kilic, E., Walkenhorst, J., Engel, S., Wehinger, J., et al. (2001) Graded expression patterns of ephrin-As in the superior colliculus after lesion of the adult mouse optic nerve. Mechanisms of Development, 106, 119–127.

    PubMed  Google Scholar 

  • Kobayashi, N.R., Fan, D.-P., Giehl, K.M., Bedard, A.M., Wiegand, S.J., & Tetzlaff, W. (1997) BDNF and NT4/5 prevent atrophy of rat rubrospinal neurons after cervical axotomy, stimulate GAP-43 and Tal-tubulin mRNA expression, and promote axonal regeneration. Journal of Neuroscience, 17, 9583–9595.

    PubMed  CAS  Google Scholar 

  • Kwon, B.K., Liu, J., Messerer, C., Kobayashi, N.R., McGraw, J., Oschipok, L., & Tetzlaff, W. (2002) Survival and regeneration of rubrospinal neurons 1 year after spinal cord injury. Proceedings of the National Academy of Science (USA), 99, 3246–3251.

    CAS  Google Scholar 

  • Leah, J., Herdegen, T., Murashov, A., Dragunow, M., & Bravo, R. (1993). Expression of immediate early gene proteins following axotomy and inhibition of axonal transport in the rat central nervous system. Neuroscience, 57, 53–66.

    PubMed  CAS  Google Scholar 

  • Lehmann, M., Fournier, A., Selles-Navarro, I., Dergham, P., Sebok, A., Leclerc, N., et al. (1999). Inactivation of Rho signaling pathway promotes CNS axon regeneration. Journal of Neuroscience, 19, 7537–7547.

    PubMed  CAS  Google Scholar 

  • Liabotis, S., & Schreyer, D.J. (1995) Magnitude of GAP-43 induction following peripheral axotomy of adult rat dorsal root ganglion neurons is independent of lesion distance, Experimental Neurology, 135, 28–35.

    PubMed  CAS  Google Scholar 

  • Lieberman, A.R. (1971) The axon reaction: a review of the principal features of perikaryal response to axon injury. International Reviews of Neurobiology, 24, 49–124.

    Google Scholar 

  • Liu, R.-Y., & Snider, W.D. (2001) Different signaling pathways mediate regenerative versus developmental sensory axon growth. Journal of Neuroscience, 21, RC164

    CAS  Google Scholar 

  • Masden, J.R., MacDonald, P., Irwin, N., Goldberg, D.E., Yao, G.-L., Meiri, K.F., et al. (1998) Tacrolimus (FK506) increases neuronal expression of GAP-43 and improves functional recovery after spinal cord injury in rats. Experimental Neurology, 154, 673–683.

    Google Scholar 

  • Mason, M.R., Campbell, G., Caroni, P., Anderson, P.N., & Lieberman, A.R. (2000) Overexpression of GAP-43 in thalamic projection neurons of transgenic mice does not enable them to regenerate axons through peripheral nerve grafts. Experimental Neurology, 165, 143–152.

    PubMed  CAS  Google Scholar 

  • McKerracher, L., David, S., Jackson, D.L., Kottis, V., Dunn, R.J., Braun, P.E. (1994) Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite growth. Neuron, 13, 805–811.

    PubMed  CAS  Google Scholar 

  • Meyer, R.L., Miotke, J.A., & Benowitz, L.I. (1994) Injury induced expression of growth-associated protein-43 in adult mouse retinal ganglion cells in vitro. Neuroscience, 63, 591–602.

    CAS  Google Scholar 

  • Mohiuddin, L., Delcroix, J.D., Fernyhough, P., & Tomlinson, R.D. (1999) Focally administered Nerve Growth Factor suppresses molecular regenerative responses of axotomized peripheral afférents in rats. Neuroscience, 91, 265–216.

    PubMed  CAS  Google Scholar 

  • Mukhopadhyay, G., Doherty, P., Walsh, F.S., Crocker, P.R., & Filbin, M.T. (1994) A novel role of myelin-associated glycoprotein as an inhibitor of axonal regeneration. Neuron, 13, 1–20.

    Google Scholar 

  • Neumann, S., & Woolf, C.J. (1999) Regeneration of dorsal column fibers into and beyond the lesion site following adult spinal cord injury. Neuron, 23, 83–91.

    PubMed  CAS  Google Scholar 

  • Neumann, S., Bradke, F., Tessier-Lavigne, M., & Basbaum, A.I. (2002) Regeneration of sensory axons within the injured spinal cord induced by intraganglionic cAMP elevation. Neuron, 34, 885–893.

    PubMed  CAS  Google Scholar 

  • Nguyen, D.T., Sanes, J.R., & Lichtman, J.L. (2002). Pre-existing pathways promote precise projection patterns. Nature Neuroscience5, 861–867.

    PubMed  CAS  Google Scholar 

  • Oudega, M., Varon, S., & Hagg, T. (1994) Regeneration of adult rat sensory axons into intraspinal nerve grafts: promoting effects of conditioning lesion and graft predegeneration. Experimental Neurology, 129, 194–206

    PubMed  CAS  Google Scholar 

  • Petrausch, B., Tabibiazar, R., Roser, T., Jing, Y., Goldman, D., Stuermer, C.A.O., et al. (2000) A Purine- Sensitive Pathway Regulates Multiple Genes Involved in Axon Regeneration in Goldfish Retinal Ganglion Cells. Journal of Neuroscience, 20, 8031–8041.

    PubMed  CAS  Google Scholar 

  • Qiu, J., Cai, D., Dai, H., McAtee, M., Hoffman, P., Bregman, B.S, et al. (2002) Spinal axon regeneration induced by elevation of cyclic AMP. Neuron, 34, 895–903.

    PubMed  CAS  Google Scholar 

  • Rao, M.S., Sun, Y., Escary, J.L., Perreau, J., Tresser, S., Patterson, P.H., et al. (1993) Leukemia inhibitory factor mediates an injury response but not a target-directed developmental transmitter switch in sympathetic neurons. Neuron, 11, 1175–85

    PubMed  CAS  Google Scholar 

  • Richardson, P.M., & Issa, V.M.K. (1984) Peripheral injury enhances regeneration of spinal axons. Nature, 284, 264–265.

    Google Scholar 

  • Rossi, F., Jankovski, A., & Sotelo, C. (1995) Differential regenerative response of Purkinje cell and inferior olivary axons confronted with embryonic grafts: environmental cues versus intrinsic neuronal determinants. Journal of Comparative Neurology, 359, 663–677.

    PubMed  CAS  Google Scholar 

  • Rossi, F., Buffo, A., & Strata, P. (2001). Regulation of intrinsic regenerative properties and axonal plasticity in cerebellar Purkinje cells. Restorative Neurology and Neuroscience, 19, 85–94.

    PubMed  CAS  Google Scholar 

  • Rossi, F., Saggiorato, C., & Strata, P. (2002) Target-specific innervation of embryonic cerebellar transplants by regenerating olivocerebellar axons in the adult rat. Experimental Neurology, 173, 205–212.

    PubMed  Google Scholar 

  • Sauvé, Y., Sawai, H., & Rasminsky, M. (2001) Topological specificity in reinnervation of the superior colliculus by regenerated retinal ganglion cell axons in adult hamsters. Journal of Neuroscience, 21, 951–960.

    PubMed  Google Scholar 

  • Schaden, H., Sturmer, C.A.O., & Bahr, M. (1994) GAP-43 immunoreactivity and axon regeneration in retinal ganglion cells of the rat. Journal of Neurobiology, 25, 1570–1578.

    PubMed  CAS  Google Scholar 

  • Schreyer, D.J., & Skene, J.H.P. (1993) Injury-associated induction of GAP-43 expression displays axon branch specificity in rat dorsal root ganglion neurons. Journal of Neurobiology, 24, 959–70.

    PubMed  CAS  Google Scholar 

  • Schwab, M.E., & Schnell, L. (1991) Channeling of developing corticospinal tract axons by myelin-associated neunte growth inhibitors. Journal of Neuroscience, 11, 709–721.

    PubMed  CAS  Google Scholar 

  • Schwab, M.E., Kapfhammer, J.P., & Bandtlow, CE. (1993) Inhibitors of neunte growth. Annual Reviews of Neuroscience, 16, 565–595.

    CAS  Google Scholar 

  • Shadiack, A.M., Vaccariello, S.A., Sun, Y., & Zigmond, R.E. (1998) Nerve growth factor inhibits sympathetic neurons’ response to an injury cytokine. Proceedings of the National Academy of Science (USA), 95, 7127–1130.

    Google Scholar 

  • Shadiack, A.M., Sun, Y., & Zigmond, R.E. (2001) Nerve Growth Factor antiserum induces axotomy-like changes in neuropeptide expression in intact sympathetic and sensory neurons. Journal of Neuroscience, 21, 363–371.

    PubMed  CAS  Google Scholar 

  • Skene, J.H.P. (1989) Axonal growth-associated proteins. Annual Reviews of Neuroscience, 12, 127–156.

    CAS  Google Scholar 

  • Skene, J.H.P. (1992) Retrograde pathways controlling expression of a major growth cone component in the adult CNS. In P.C. Letourneau, S.B. Kater & E.R. Macagno (Eds.), The Nerve Growth Cone (pp. 463–475). New York: Raven Press.

    Google Scholar 

  • Smith, D.S., & Skene, J.H.P. (1997) A transcription-dependent switch controls competence of adult neurons for distinct modes of axon growth. Journal of Neuroscience15, 646–658.

    Google Scholar 

  • Sun, Y., & Zigmond, R. (1996) Involvement of leukemia inhibitory factor in the increase of galanin and vasoactive intestinal peptide mRNA and the decreases in neuropeptide Y and tyrosine hydroxylase mRNS after axotomy of sympathetic neurons. Journal ofNeurochemistry, 67, 1751–60.

    CAS  Google Scholar 

  • Sun, Y., Rao, M., Zigmond, R.E., & Landis, S.C. (1994) Regulation of vasoactive intestinal peptide expression in sympathetic neurons in culture and after axotomy: the role of cholinergic differentiation factor/leukemia inhibitory factor. Journal of Neurobiology, 25, 415–430.

    PubMed  CAS  Google Scholar 

  • Tetzlaff, W.G., Kobayashi, N.R., Giehl, K.M.G., Tsui, B.J., Cassar, S.L., & Bedard, A.M. (1994) Response of rubrospinal and corticospinal neurons to injury and neurotrophins. In F.J. Seil (Ed.). Neural Regeneration. Progress in Brain Research, Vol. 103 (pp 271–286). Amsterdam: Elsevier.

    Google Scholar 

  • Thallmair, M., Metz, G.A.S., Z’Graggen, W.J., Raineteau, O., Kartje, G.L., & Schwab, M.E. (1998). Neurite growth inhibitors restrict plasticity and functional recovery following corticospinal tract lesions. Nature Neuroscience, 1, 124–131.

    PubMed  CAS  Google Scholar 

  • Udvadia, A.J., Köster, R.W., & Skene, J.H.P. (2001) GAP-43 promoter elements in transgenic zebrafish reveal a difference in signals for axon growth during CNS development and regeneration. Development128, 1175–1182.

    PubMed  CAS  Google Scholar 

  • Vantini, G., Schiavo, N., Di Martino, A., Polato, P., Triban, C., Callegaro, L., et al., (1989). Evidence for a physiological role of nerve growth factor in the central nervous system of neonatal rats. Neuron, 3, 267–273.

    PubMed  CAS  Google Scholar 

  • Vaudano, E., Campbell, G., Anderson, P.N., Davies, A.P., Woolhead, C., Schreyer, D.J., et al. (1995) The effects of a lesion or a peripheral nerve graft on GAP-43 upregulation in the adult brain: an in situ hybridisation and immunocytochemical study., Journal of Neuroscience, 15, 3594–3611.

    PubMed  CAS  Google Scholar 

  • Verzè, L., Buffo, A., Rossi, F., Oestreicher, A.B., Gispen W.H., & Strata, P. (1996) Increase of B-50/GAP-43 immunoreactivity in uninjured muscle nerves of mdx mice. Neuroscience, 70, 807–815.

    PubMed  Google Scholar 

  • Vidal-Sanz, M., Bray, G.M., Villegas-Perez, M.P., Thanos, S., Aguayo, A.J. (1987). Axonal regeneration and synapse formation in the superior colliculus by retinal ganglion cells in the adult rat. Journal of Neuroscience7, 2894–909

    PubMed  CAS  Google Scholar 

  • Wang, K.C., Koprivica, V., Kim, J.A., Sivasankaran, R., Guo, Y., Neve, R.L., et al. (2002) Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. Nature, 417, 941–944.

    PubMed  CAS  Google Scholar 

  • Wang, X., Chun, S.-J., Treloar, H., Vartanian, T., Greer, CA., Strittmatter, S.M. (2002a). Localization of Nogo-A and Nogo-66 receptor proteins at sites of axon-myelin and synaptic contact. Journal of Neuroscience, 22, 5505–5515.

    PubMed  CAS  Google Scholar 

  • Wang, X., Chun, S.-J., Treloar, H., Vartanian, T., Greer, CA., Strittmatter, S.M. (2002b) Localization of Nogo-A and Nogo-66 receptor proteins at sites of axon-myelin and synaptic contact. Journal of Neuroscience, 22, 5505–5515.

    PubMed  CAS  Google Scholar 

  • Wizenmann, A., Thies, E., Klostermann, S., Bonhoeffer, F., & Bahr, M. (1993). Appearance of target-specific guidance information for regenerating axons after CNS lesions. Neuron, 11, 975–983.

    PubMed  CAS  Google Scholar 

  • Wong, J., & Oblinger, M.M. (1990) A comparison of peripheral and central axotomy effects on neurofilament and tubulin gene expression in rat dorsal root ganglion neurons. Journal of Neuroscience, 10, 2215–2222.

    PubMed  CAS  Google Scholar 

  • Wong, J., & Oblinger, M.M. (1991) NGF rescues substance P expression but not neurofilament or tubulin gene expression in axotomized sensory neurons. Journal of Neuroscience, 11, 543–552.

    PubMed  CAS  Google Scholar 

  • Woolf, C.J., Molander, C., Reynolds, M., & Benowitz, L.I. (1990) GAP-43 appears in the rat dorsal horn following peripheral nerve injury. Neuroscience, 34, 465–478.

    PubMed  CAS  Google Scholar 

  • Wu, W., Mathew, T.C., & Miller, F.D. (1993) Evidence that the loss of homeostatic signals induces regeneration-associated alterations in neuronal gene expression, Developmental Biology, 158, 456–466.

    PubMed  CAS  Google Scholar 

  • Zagrebelsky, M., Rossi, F., Hawkes, R., & Strata P. (1996) Topographically arranged climbing fibre sprouting in the adult rat cerebellum. European Journal of Neuroscience, 8, 1051–1054.

    PubMed  CAS  Google Scholar 

  • Zagrebelsky, M., Buffo, A., Skerra, A., Schwab, M.E., Strata, P., & Rossi, F. (1998) Retrograde regulation of growth-associated gene expression in adult rat Purkinje cells by myelin-associated neurite growth inhibitory proteins. Journal of Neuroscience, 18, 7912–7929.

    PubMed  CAS  Google Scholar 

  • Z’Graggen, W.J., Fouad, K., Raineteau, O., Metz, G.A., Schwab, M.E., Kartje, G.L. (2000) Compensatory sprouting and impulse rerouting after unilateral pyramidal tract lesion in neonatal rats. Journal of Neuroscience, 20, 6561–6569.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rossi, F. (2004). Regulation of the Intrinsic Growth Properties in Mammalian Neurons. In: Herdegen, T., Delgado-García, J. (eds) Brain Damage and Repair. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2541-6_22

Download citation

  • DOI: https://doi.org/10.1007/1-4020-2541-6_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6538-4

  • Online ISBN: 978-1-4020-2541-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics