Skip to main content

Neural Plasticity and Regeneration: Myths and Expectations

  • Chapter

Summary

In this chapter, we will make a short revision of the concepts of neural plasticity and regeneration, and their relationships with processes such as motor learning and functional recovery following a lesion of the central or peripheral nervous systems. Particular attention will be paid to the actual morphological and physiological limits between plastic and regenerative processes in the adult mammal’s brain, as well as to their potential functionality and adaptability. A precise delimitation will be trace between regenerative phenomena and compensatory mechanisms and other cognitive activities, which are sometimes confused with neural plastic processes. As a practical support to the concepts proposed here, some illustrative examples, collected from animal experimentation carried out in our laboratory, will be described briefly.

Keywords

  • Conditioned Stimulus
  • Facial Nerve
  • Neural Plasticity
  • Adult Mammal
  • Central Nervous System Neuron

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/1-4020-2541-6_17
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   229.00
Price excludes VAT (USA)
  • ISBN: 978-1-4020-2541-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   299.99
Price excludes VAT (USA)
Hardcover Book
USD   299.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barron KD (1989) Neuronal responses to axotomy: consequences and possibilities for rescue from permanent atrophy and cell death. In: Neural Regeneration and Transplantation (Ed. FJ Seil), pp. 79–100. Alan R Liss Inc, New York.

    Google Scholar 

  • Bliss TVP and Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature, 361, 31–39.

    PubMed  CrossRef  CAS  Google Scholar 

  • Bothwell M (1995) Functional interactions of neurotrophins and neurotrophin receptors. Annual Review of Neuroscience, 18, 223–253.

    PubMed  CrossRef  CAS  Google Scholar 

  • Carlin RK and Siekevitz P (1983) Plasticity in the central nervous system: do synapses divide? Proceedings of the National Academy of Sciences (USA), 80, 3517–3521.

    CrossRef  CAS  Google Scholar 

  • Cotman CW and Nieto-Sampedro M (1984) Cell biology of synaptic plasticity. Science, 225, 1287–1294.

    PubMed  CrossRef  CAS  Google Scholar 

  • Czéh G, Gallego R, Kudo N and Kuno M (1978) Evidence for the maintenance of motoneurone properties by muscle activity. The Journal of Physiology (London), 281, 239–252.

    Google Scholar 

  • De la Cruz RR, Pastor AM and Delgado-García JM (1996) Influence of the postsynaptic target on the functional properties of neurons in the adult mammalian central nervous system. Reviews in the Neurosciences, 1, 115–149.

    Google Scholar 

  • De la Cruz RR, Delgado-Garcia JM and Pastor AM (2000) Discharge characteristics of axotomized abducens internuclear neurons in the adult cat. Journal of Comparative Neurology, 427, 391–404.

    CrossRef  Google Scholar 

  • Delgado-Garcia JM (1998) Output-to-input approach to neural plasticity in vestibular pathways. Otolaryngology-Head and Neck Surgery, 119, 221–230.

    PubMed  CrossRef  CAS  Google Scholar 

  • Delgado-Garcia JM (2003) Plasticidad y regeneración neuronal: mitos y expectativas. Medicina Intensiva Online 3, 289–295.

    Google Scholar 

  • Delgado-García JM and Gruart A (2002) The role of interpositus nucleus in eyelid conditioned responses. The Cerebellum, 1, 289–308.

    PubMed  CrossRef  Google Scholar 

  • Delgado-Garcia JM, del Pozo F, Spencer R and Baker R (1988) Behavior of neurons in the abducens nucleus of the alert cat—III. Axotomized motoneurons. Neuroscience, 24, 143–160.

    PubMed  CrossRef  CAS  Google Scholar 

  • Edwards FA (1995) LTP—a structural model to explain inconsistencies. Trends in the Neurosciences, 18, 250–255.

    CrossRef  CAS  Google Scholar 

  • Geinisman Y, Berry RW, Disterhoft JF, Power JM and Van der Zee EA (2001) Associative learning elicits the formation of multiple-synapse boutons. Journal of Neuroscience, 21, 5568–5573.

    PubMed  CAS  Google Scholar 

  • Gruart A, Blázquez P and Delgado-Garcia JM (1995) Kinematics of spontaneous, reflex, and conditioned eyelid movements in the alert cat. Journal of Neurophysiology, 74, 226–248.

    PubMed  CAS  Google Scholar 

  • Gruart A, Guillazo-Blanch G, Fernández-Mas R, Jiménez-Díaz L and Delgado-Garcia JM (2000) Cerebellar posterior interpositus nucleus as an enhancer of classically conditioned eyelid responses in alert cats. Journal of Neurophysiology, 84, 2680–2690.

    PubMed  CAS  Google Scholar 

  • Gruart A, Gunkel A, Neiss WF, Angelov DN, Stennert E and Delgado-Garcia JM (1996) Changes in eye blink responses following hypoglossal-facial anastomosis in the cat: evidence of adult mammal motoneuron unadaptability to new motor tasks. Neuroscience, 73, 233–247.

    PubMed  CrossRef  CAS  Google Scholar 

  • Gruart A, Streppel M, Guntinas-Lichius O, Angelov DN, Neiss WF and Delgado-Garcia JM (2002) Motoneuron adaptability to new motor tasks following two types of facial-facial anastomosis in cats. Brain, 126, 115–133.

    CrossRef  Google Scholar 

  • Gudino-Cabrera G, Pastor AM, de la Cruz RR, Delgado-Garcia JM and Nieto-Sampedro M (2000) Limits to the capacity of transplants of olfactory glia to promote axonal regrowth in the CNS. Neuroreport, 11, 467–471.

    PubMed  CrossRef  CAS  Google Scholar 

  • Hay don PG and Drapeau P (1995) From contact to connection: early events during synaptogenesis. Trends in the Neurosciences, 18, 196–201.

    CrossRef  CAS  Google Scholar 

  • Johnson RD, Taylor JS, Mendell LM and Munson JB (1995) Rescue of motoneuron and muscle afferent function in cats by regeneration into skin. I. Properties of afférents. Journal of Neurophysiology, 73, 651–661.

    PubMed  CAS  Google Scholar 

  • Kandel ER, Schwartz JH and Jessell TM (2000) Principles of Neural Science. McGraw-Hill, New York.

    Google Scholar 

  • Kirkwood A, Lee HK and Bear MF (1995) Co-regulation of long-term potentiation and experience- dependent synaptic plasticity in visual cortex by age and experience. Nature, 375, 328–331.

    PubMed  CrossRef  CAS  Google Scholar 

  • Kuno M, Miyata Y and Munoz-Martinez E J (1974) Differential reaction of fast and slow a-motoneurones to axotomy. The Journal of Physiology (London), 240, 725–739.

    CAS  Google Scholar 

  • Levi-Montalcini R (1982) Developmental neurobiology and the natural history of nerve growth factor. Annual Review of Neuroscience, 5, 341–362.

    PubMed  CrossRef  CAS  Google Scholar 

  • Lieberman AR (1971) The axon reaction: a review of the principal features of perikaryal responses to axon injury. International Review of Neurobiology, 14, 49–123.

    PubMed  CrossRef  CAS  Google Scholar 

  • Llinás R (2001) I of the Vortex. From Neurons to Self The MIT Press, Cambridge, MA.

    Google Scholar 

  • Malenka RC (1995) LTP and LTD: dynamic and interactive processes of synaptic plasticity. The Neuroscientist, 1, 35–42.

    CrossRef  Google Scholar 

  • Morcuende S, Delgado-Garcia JM and Ugolini (2002) Neuronal premotor networks involved in eyelid responses: retrograde transneuronal tracing with rabies virus from the orbicularis oculi muscle in the rat. Journal of Neuroscience, 22, 8808–8818.

    PubMed  CAS  Google Scholar 

  • Pastor AM, Delgado-Garcia JM, Martinez-Guijarro FJ, López-García C and de la Cruz RR (2000) Response of abducens internuclear neurons to axotomy in the adult cat. Journal of Comparative Neurology, 427, 370–390.

    PubMed  CrossRef  CAS  Google Scholar 

  • Pozo MA and Cerveró F (1993) Neurons in the rat spinal trigeminal complex driven by corneal nociceptors: receptive-field properties and effects of noxious stimulation of the cornea. Journal of Neurophysiology, 70, 2370–2378.

    PubMed  CAS  Google Scholar 

  • Privat A, Chauvet N and Gimenez y Ribota M (1997) Repousse axonale et obstacle glial. Revieu de Neurologie (Paris), 153, 515–520.

    CAS  Google Scholar 

  • Purves D (1986) The trophic theory of neural connections. Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Ramón y Cajal S (1911, 1972) Histologie du système nerveux de l’homme et des vertébrés, Vol 2. C.S.I.C, Madrid.

    Google Scholar 

  • Schnell L and Schwab ME (1990) Axonal regeneration in the rat spinal cord produced by an antibody against myelin-associated neurite growth inhibitors. Nature, 343, 269–272.

    PubMed  CrossRef  CAS  Google Scholar 

  • Selzer ME (1980) Regeneration of peripheral nerve. In: The Physiology of Peripheral Nerve Disease (Ed. AJ Summer), pp. 358–431. WB Saunders Company, Philadelphia.

    Google Scholar 

  • Sofroniew MV, Galletly NP, Isacson O and Svendsen CN (1990) Survival of adult basal forebrain cholinergic neurons after loss of target neurons. Science, 247, 338–342.

    PubMed  CrossRef  CAS  Google Scholar 

  • Sperry RW (1945) The problem of central nervous reorganization after nerve regeneration and muscle transposition. Quarterly Review of Biology, 20, 311–369.

    PubMed  CrossRef  CAS  Google Scholar 

  • Sunderland S S (1991) Nerve Injuries and their Repair. A Critical Appraisal. Churchill Livingstone, Edinburgh.

    Google Scholar 

  • Schwab ME (2002) Repairing the injured spinal cord. Science, 295, 1029–1031.

    PubMed  CrossRef  CAS  Google Scholar 

  • Takata, M (1993) Two types of inhibitory postsynaptic potentials in the hypoglossal motoneurons. Progress in Neurobiology, 40, 385–411.

    PubMed  CrossRef  CAS  Google Scholar 

  • Tsukahara N (1981) Synaptic plasticity in the mammalian central nervous system. Annual Review of Neuroscience, 4, 351–379

    PubMed  CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Delgado-García, J.M., Gruart, A. (2004). Neural Plasticity and Regeneration: Myths and Expectations. In: Herdegen, T., Delgado-García, J. (eds) Brain Damage and Repair. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2541-6_17

Download citation

  • DOI: https://doi.org/10.1007/1-4020-2541-6_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6538-4

  • Online ISBN: 978-1-4020-2541-9

  • eBook Packages: Springer Book Archive