Skip to main content

The Outlines Of Bacterial Evolution

  • Chapter
Origins

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 6))

  • 1654 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8. Reference List

  • Balows, A., Trüper, H.G., Dworkin, M., Harder, W., and Schleifer, K.H. (1992) The Prokaryotes New York: Springer-Verlag.

    Google Scholar 

  • Brendel, V., Brocchieri, L., Sandler, S.J., Clark, A.J., and Karlin, S. (1997) Evolutionary comparisons of RecA-like proteins across all major kingdoms of living organisms J. Mol. Evol. 44: 528–541.

    Article  CAS  Google Scholar 

  • Brown, J.R., Doolittle, W.F. (1995) Root of the universal tree of life based on ancient aminoacyl-tRNA synthetase gene duplications Proc. Natl. Acad. Sci. USA 92: 2441–2445.

    CAS  Google Scholar 

  • Brown, J.R., Doolittle, W.F. (1997) Archaea and the prokaryote-to-eukaryote transition Microbiol. Mol. Biol. Rev. 61: 456–502.

    CAS  Google Scholar 

  • Brown, J.R, Douady, C.J., Italia, M.J., Marshall, W.E., Stanhope, M.J. (2001) Universal trees based on large combined protein sequence data sets Nat. Genet. 28: 281–285.

    Article  CAS  Google Scholar 

  • Buchanan, R.E. (1925) General Systematic Bacteriology Baltimore: Williams and Wilkins.

    Google Scholar 

  • Daubin, V., Gouy, M., and Perriere, G. (2002) A phylogenomic approach to bacterial phylogeny: evidence of a core of genes sharing a common history Genome Res 12: 1080–1090.

    Article  CAS  Google Scholar 

  • Doolittle, W.F. (1999) Phylogenetic classification and the universal tree Science 284: 2124–2128.

    Article  CAS  Google Scholar 

  • Eisen, JA. (1995) The RecA protein as a model molecule for molecular systematic studies of bacteria: comparison of trees of RecAs and 16S rRNAs from the same species J. Mol. Evol. 41: 1105–1123.

    Article  CAS  Google Scholar 

  • Fox, G.E., Stackebrandt, E., Hespell, R.B., Gibson, J., Maniloff, J., Dyer, T.A., Wolfe, R.S., Balch, W.E., Tanner, R.S., Magrum, L.J., Zablen, L.B., Blakemore, R, Gupta, R., Bonen, L., Lewis, B.J., Stahl, D.A., Luehrsen, K.R., Chen, K.N., and Woese, C.R. (1980) The phylogeny of prokaryotes Science 209: 457–463.

    CAS  Google Scholar 

  • Gogarten, J.P., Doolittle, W.F., and Lawrence, J.G. (2002) Prokaryotic evolution in light of gene transfer Mol Biol Evol. 19: 2226–2238.

    CAS  Google Scholar 

  • Gram, C. (1884) Ueber die isolierte farbung der Schizomyceten in Schnitt und Trockenpraparaten Fortschr. Med. 2: 185–189.

    Google Scholar 

  • Griffiths, E., Gupta, R.S. (2002) Protein signatures distinctive of chlamydial species: Horizontal transfer of cell wall biosynthesis genes glmU from Archaebacteria to Chlamydiae, and murA between Chlamydiae and Streptomyces Microbiology 148: 2541–2549.

    CAS  Google Scholar 

  • Gupta, R.S. (1995) Evolution of the chaperonin families (Hsp60, Hsp10 and Tcp-1) of proteins and the origin ofeukaryotic cells Mol. Microbiol. 15: 1–11.

    CAS  Google Scholar 

  • Gupta, R.S. (1998a) Protein Phylogenies and Signature Sequences: A Reappraisal of Evolutionary Relationships Among Archaebacteria, Eubacteria, and Eukaryotes Microbiol. Mol. Biol. Rev. 62: 1435–1491.

    CAS  Google Scholar 

  • Gupta, R.S. (1998b) What are archaebacteria: Life’s third domain or monoderm prokaryotes related to Grampositive bacteria? A new proposal for the classification of prokaryotic organisms Mol. Microbiol. 29: 695–708.

    Article  CAS  Google Scholar 

  • Gupta, R.S. (1998c) Life’s third domain (Archaea): An established fact or an endangered paradigm? A new proposal for classification of organisms based on protein sequences and cell structure Theor. Popul. Biol. 54: 91–104.

    Article  CAS  Google Scholar 

  • Gupta, R.S. (2000a) The Natural Evolutionary Relationships Among Prokaryotes Crit. Rev. Microbiol. 26: 111–131.

    Article  CAS  Google Scholar 

  • Gupta, R.S. (2000b) The phylogeny of Proteobacteria: relationships to other eubacterial phyla and eukaryotes FEMS Microbiol Rev. 24: 367–402.

    CAS  Google Scholar 

  • Gupta, R.S. (2001) The branching order and phylogenetic placement of species from completed bacterial genomes, based on conserved indels found in various proteins International Microbiol. 4: 187–202.

    Article  CAS  Google Scholar 

  • Gupta, R.S. (2002) Phylogeny of Bacteria: Are we now close to understanding it? ASM News 68: 284–291.

    Google Scholar 

  • Gupta, R.S., Bustard, K., Falah, M., and Singh, D. (1997) Sequencing of heat shock protein 70 (DnaK) homologs from Deinococcus proteolyticus and Thermomicrobium roseum and their integration in a protein-based phylogeny of prokaryotes J. Bacteriol. 179: 345–357.

    CAS  Google Scholar 

  • Gupta, R.S., Griffiths, E. (2002) Critical Issues in Bacterial Phylogenies Theor. Popul. Biol. 61: 423–434.

    Article  Google Scholar 

  • Gupta, R.S., Johari, V. (1998) Signature sequences in diverse proteins provide evidence of a close evolutionary relationship between the Deinococcus-Thermus group and Cyanobacteria J. Mol. Evol. 46: 716–720.

    Article  CAS  Google Scholar 

  • Gupta, R.S., Singh, B. (1992) Cloning of the HSP70 gene from Halobacterium marismortui: relatedness of archaebacterial HSP70 to its eubacterial homologs and a model for the evolution of the HSP70 gene J. Bacteriol. 174: 4594–4605.

    CAS  Google Scholar 

  • Iwabe, N., Kuma, K., Hasegawa, M., Osawa, S., and Miyata, T. (1989) Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes Proc. Natl. Acad. Sci. USA 86: 9355–9359.

    CAS  Google Scholar 

  • Jain, R., Rivera, M., and Lake, J.A. (1999) The complexity hypothesis Proc. Natl, Acad. Sci. USA 96: 3801–3806.

    Article  CAS  Google Scholar 

  • Kluyver, A.J., van Niel, C.B. (1936) Prospects for a natural system of classification of bacteria Zentralblatt fur Bakteriologie, Parasitenkunde und Infektionskrankheiten II 94: 369–403.

    Google Scholar 

  • Koonin, E.V., Makarova, K.S., and Aravind, L. (2001) Horizontal gene transfer in prokaryotes: quantification and classification Annu. Rev. Microbiol. 55 709–742.

    Article  CAS  Google Scholar 

  • Ludwig, W., Klenk, H.-P. (2001) Overview: A phylogenetic backbone and taxonomic framework for prokaryotic systamatics. In: D.R. Boone and R.W. Castenholz (eds.) Bergey’s Manual of Systematic Bacteriology, Berlin: Springer-Verlag, pp. 49–65.

    Google Scholar 

  • Ludwig, W., Schleifer, K.H. (1999) Phylogeny of Bacteria beyond the 16S rRNA Standard ASM News 65: 752–757.

    Google Scholar 

  • Lyons, S.L. (2002) Thomas Kuhn is alive and well: the evolutionary relationships of simple life form-a paradigm under siege ? Perspect. Biol. Med. 45: 359–376.

    Google Scholar 

  • Murray, R.G.E. (1986b) Family II. Deinococcaceae Brooks and Murray 1981, 356VP. In: P.H.A. Sneath, N.S. Mair, M.E. Sharpe, and J.G. Holt (eds.) Bergey’s Manual of Systematic Bacteriology, Baltimore: The Williams and Wilkins, pp. 1035–1043.

    Google Scholar 

  • Murray, R.G.E. (1986a) The Higher Taxa, or, A Place for Everything? In: P.H.A. Sneath, N.S. Mair, M.E. Sharpe, and J.G. Holt (eds.) Bergey’s Manual of Systematic Bacteriology, Baltimore: The Williams and Wilkins, pp. 31–34.

    Google Scholar 

  • Olsen, G.J., Woese, C.R. (1993) Ribosomal RNA: a key to phylogeny. FASEB Journal. 7: 113–123.

    CAS  Google Scholar 

  • Olsen, G.J., Woese, C.R., and Overbeek, R. (1994) The winds of (evolutionary) change: breathing new life into microbiology. J. Bacteriol. 176: 1–6.

    CAS  Google Scholar 

  • Orla-Jensen, S. (1909) Die Hauptlinien de natürlichen Baketeriensystems nebst einer Uebersicht der Gärungsphenomene. Zentr. Bakt. Parasitenk. II 22: 305–346.

    Google Scholar 

  • Stanier, R.Y. (1941) The main outlines of bacterial classification J. Bacteriol. 42: 437–466.

    CAS  Google Scholar 

  • Stanier, R.Y., Adelberg, E.A., and Ingraham, J.L. (1976) The Microbial World New Jersey: Prentice-Hall Inc., pp. 1–871.

    Google Scholar 

  • Stanier, R.Y., van Niel, C.B. (1962) The concept of a bacterium Archiv fur Mikrobiologie 42: 17–35.

    Article  CAS  Google Scholar 

  • Viale, A.M., Arakaki, A.K., Soncini, F.C., and Ferreyra, R.G. (1994) Evolutionary relationships among eubacterial groups as inferred from GroEL (chaperonin) sequence comparisons Int. J. Syst. Bacteriol. 44: 527–533.

    Article  CAS  Google Scholar 

  • Woese, C.R. (1987) Bacterial evolution. Microbiol. Rev. 51: 221–271.

    CAS  Google Scholar 

  • Woese, C.R. (1991) The use of ribosomal RNA in reconstructing evolutionary relationships among bacteria. In: R.K. Selander, A.G. Clark and T.S. Whittmay (eds.) Evolution at Molecular Level, Sunderland, MA: Sinauer Associates Inc., pp. 1–24.

    Google Scholar 

  • Woese, C.R. (1992) Prokaryote Systematics: The Evolution of a Science. In: A. Balows, H.G. Trüper, M. Dworkin, W. Harder and K.H. Schleifer (eds.) The Prokaryotes, New York: Springer-Verlag, pp. 3–18.

    Google Scholar 

  • Woese, C.R. (1998) The universal ancestor Proc. Natl. Acad. Sci. USA 95: 6854–6859.

    Article  CAS  Google Scholar 

  • Woese, C.R., Kandler, O., and Wheelis, M.L. (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya Proc. Natl. Acad. Sci. USA 87: 4576–4579.

    CAS  Google Scholar 

  • Wolf, Y.I., Rogozin, I.B., Grishin, N.V., Tatusov, R.L., and Koonin, E.V. (2001) Genome trees constructed using five different approaches suggest new major bacterial clades BMC Evol Biol. 1: 8

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Gupta, R.S. (2004). The Outlines Of Bacterial Evolution. In: Seckbach, J. (eds) Origins. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 6. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2522-X_17

Download citation

Publish with us

Policies and ethics