Skip to main content

Digital Terrain

Defining the Drainage Network

  • Chapter
Distributed Hydrologic Modeling Using GIS

Part of the book series: Water Science and Technology Library ((WSTL,volume 48))

  • 502 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Chang, K. and Tsai, B., 1991, “The effect of DEM resolution on slope and aspect mapping” Cartography and Geographic Information Systems, 18(1): 69–77.

    Article  Google Scholar 

  • Farajalla, N. S. and Vieux, B. E., 1995, “Capturing the essential spatial variability in distributed hydrologic modeling: Infiltration parameters.” J. of Hydrol. Process, 8(1):55–68

    Google Scholar 

  • Fern, A., Musavi, M.T., and Miranda, J., 1998, “Automatic extraction of drainage network from digital terrain elevation data:A local network approach.” Trans. on Geoscience and Remote Sensing, 36(3):1007.1015

    Google Scholar 

  • Freeman, T.G., 1991, “Calculating catchment area with divergent flow based on a regular grid.” Computers & Geosciences, 17(3):413–422

    Article  Google Scholar 

  • Garbrecht, J. and Shen, H. W., 1988, “The physical framework of the dependence between channel flow hydrographs and drainage network morphometry.” J. Hydrol. Process., 2:337.355

    Google Scholar 

  • Goodchild, M. F., 1980, “Fractals and the Accuracy of Geographical Measures.” Mathematical Geology, 12(2):85

    Article  Google Scholar 

  • Goodchild, M.F. and Mark, D.M., 1987, “The Fractal Nature of Geographic Phenomena.” Annals of the Association of American Geographers, 77(2):265–278

    Article  Google Scholar 

  • Hjelmfelt, A. T., Jr., 1988, “Fractals and the River-Length Catchment-Area Ratio.” Water Resources Bulletin, 24(2), April:455–459

    Google Scholar 

  • Huang, J. and Turcotte, D.L., 1989, “Fractal mapping of digitized images: Application to the topography of Arizona and comparisons with synthetic images.” J. of Geophysical Research, 94(B6):7491–7495

    Article  Google Scholar 

  • Hutchinson, M. F., 1989, “A New Procedure for Gridding Elevation and Stream Line Data with Automated Removal of Spurious Pits.” J. of Hydrol., 106:211–232

    Google Scholar 

  • Jenson, S. K., 1985, Automated derivation of hydrologic basin characteristics from digital elevation model data. Proc. Auto-Carto 7-Digital Representation of Spatial Knowledge, Washington D.C., 301–310.

    Google Scholar 

  • Jenson, S. K., 1991, “Applications of Hydrologic Information Automatically Extracted from Digital Elevation Models.” In: Analysis and Distributed Modeling in Hydrology. Eds. Beven, K.J. and Moore, I.D. Terrain. John Wiley and Sons, Chicester, U.K. pp.35–48

    Google Scholar 

  • Jenson, S. K. and Dominique, J. O., 1988, “Extracting Topographic Structure from Digital Elevation Data for Geographic Information System Analysis.” Photogramm. Eng. and Rem. S., 54(11):1593–1600

    Google Scholar 

  • La Barbera, P.L. and Rosso, R., 1989, “On the fractal dimension of stream networks.” Water Resour. Res., 25(4):735–741

    Google Scholar 

  • Lee, J, Snyder, K., and Fisher, P. F., 1992, “Modeling the effect of data errors on feature extraction from digital elevation models.” Photogramm. Eng. and Rem. S., 58:1461–1467.

    Google Scholar 

  • Lee, J and Chu, C-J., 1996, “Spatial structures of digitial terrain models and hydrological feature extraction.” IAHS Publ, No.235

    Google Scholar 

  • Martz, L. W. and Grabrecht, J., 1992, “Numerical definition of drainage network and subcatchment areas from digital elevation models.” Computers & Geosciences 18(6):747.761

    Article  Google Scholar 

  • Moore, I. D. and Grayson, R. B., 1991, “Terrain-based catchment partitioning and runoff prediction using vector elevation data.” Water Resour. Res., 27(6), June:1177–1191

    Article  Google Scholar 

  • O’Callaghan, J.F. and Mark, D.M., 1984, “The extraction of drainage networks from digital elevation data.” Computer vision, graphics and image processing, 28:323–344.

    Google Scholar 

  • Qian, J., Ehrich, W., and Campbell, J.B., 1990, “DNESYS-An expert system for automatic extraction of drainage networks from digital elevation data.” IEEE Trans.Geosci.Remote Sensing, 28:29–44.

    Article  Google Scholar 

  • Quinn, P., Beven, K., Chevallier, P., and Planchon, O., 1991, “The Prediction of Hillslope Flow Paths for Distributed Hydrological Modeling using Digital Terrain Models.” In: Terrain Analysis and Distributed Modeling in Hydrology. Eds. Beven, K. J. and Moore, I. D. John Wiley and Sons, Chichester, U.K. pp.63–83.

    Google Scholar 

  • Robert, A. and Roy, A. G., 1990, “On the fractal interpretation of the mainstream length-drainage area relationship.” Water Resour. Res., 26(5):839–842.

    Article  Google Scholar 

  • Tarboton, D. G., Bras, R. L., and Iturbe, I. R., 1988, “The fractal nature of river networks.” Water Resour. Res., 24(8):1317–1322.

    Google Scholar 

  • Tarboton, D. G., Bras, R. L., and Iturbe, I. R., 1989, “Scaling and elevation in river networks.” Water Resour. Res., 25(9):2037–2051.

    Google Scholar 

  • Tarboton, D. G., Bras, R. L., and Iturbe, I. R., 1991, “On the extraction of channel networks from digital elevation data.” In: Terrain Analysis and Distributed Modeling in Hydrology. Eds. Beven, K. J. and Moore, I. D. John Wiley, New York. pp.85–104.

    Google Scholar 

  • Vieux, B. E., 1988, Finite Element Analysis of Hydrologic Response Areas Using Geographic Information Systems. Department of Agricultural Engineering, Michigan State University. A dissertation submitted in partial fulfillment for the degree of Doctor of Philosophy.

    Google Scholar 

  • Vieux, B. E., 1993, “DEM Aggregation and Smoothing Effects on Surface Runoff Modeling.” ASCE, J. of Computing in Civil Engineering, Special Issue on Geographic Information Analysis., 7(3):310–338.

    Google Scholar 

  • Vieux, B. E. and Farajalla, N. S., 1994, Capturing the Essential Spatial Variability in Distributed Hydrological Modeling: Hydraulic Roughness. J. Hydrol. Process, 8:221–236.

    Google Scholar 

  • Vieux, B. E. and Needham, S., 1993, “Nonpoint-Pollution Model Sensitivity to Grid-Cell Size.” J. of Water Resources Planning and Management, 119(2):141–157.

    Google Scholar 

  • Vieux, B.E.,C. Chen, J.E. Vieux, and K.W. Howard. Operational deployment of a physics-based distributed rainfall-runoff model for flood forecasting in Taiwan. In proceedings, Weather Radar Information and Distributed Hydrological Modelling, IAHS General Assembly at Sapporo, Japan, July 3–11, 2003. eds. Tachikawa, B. Vieux, K.P. Georgakakos, and E. Nakakita, IAHS Red Book Publication No. 282: 251–257.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

(2004). Digital Terrain. In: Distributed Hydrologic Modeling Using GIS. Water Science and Technology Library, vol 48. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2460-6_7

Download citation

  • DOI: https://doi.org/10.1007/1-4020-2460-6_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-2459-7

  • Online ISBN: 978-1-4020-2460-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics