Skip to main content

Nanoscale Random Spin-Orbit Coupling in Low-Dimensional Structures

  • Conference paper
Spectroscopy of Emerging Materials

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 165))

  • 942 Accesses

Abstract

Spin-orbit coupling is a crucial parameter controlling the spin relaxation rate in solids. Here we review recent theoretical results on the randomness of spin-orbit coupling in two-dimensional structures and show that it exists in a form of random nanodomains. The spin relaxation rate arising due the randomness is analyzed. The random spin-orbit coupling leads to a measurable intensity of electric dipole spin resonance, that is to spin-flip transitions caused by the electric field of an electromagnetic wave.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Datta and B. Das, Appl. Phys. Lett. 56, 665 (1990)

    Article  CAS  Google Scholar 

  2. G. Burkard, D. Loss, and D.P. DiVincenzo, Phys. Rev. B 59, 2070 (1999)

    Google Scholar 

  3. A. V. Khaetskii and Y. V. Nazarov, Phys. Rev. B 61, 12639 (2000)

    Google Scholar 

  4. F. Mireles and G. Kirczenow, Europhys. Lett. 59, 107 (2002)

    Article  CAS  Google Scholar 

  5. I. Zutic, J. Fabian, and S. Das Sarma, Phys. Rev. Lett. 88, 066603 (2002)

    Article  CAS  Google Scholar 

  6. Yu. A. Bychkov and E. I. Rashba, JETP Lett. 39, 79 (1984), E.I. Rashba, Sov. Phys.-Solid State 2, 1874, (1964)

    Google Scholar 

  7. D. Stein, K. v. Klitzing, and G. Wiemann, Phys. Rev. Lett. 51, 130 (1983)

    Article  CAS  Google Scholar 

  8. A. D. Wieck et al., Phys. Rev. Lett. 53, 493 (1984)

    Article  CAS  Google Scholar 

  9. P. Pfeffer and W. Zawadzki, Phys. Rev. B 59, R5312 (1999)

    Google Scholar 

  10. B. Jusserand et al., Phys. Rev. B 51, 4707 (1995)

    Google Scholar 

  11. T. Koga et al., Phys. Rev. Lett. 89, 046801 (2002)

    Google Scholar 

  12. M.I. Dyakonov and Y.Yu. Kachorovskii, Sov. Phys. Semicond. 20, 110 (1986)

    Google Scholar 

  13. E.I. Rashba and E.Ya. Sherman, Phys. Lett. A 129, 175 (1988)

    Google Scholar 

  14. R. Winkler et al., Phys. Rev. Lett., 85, 4574 (2000)

    Article  CAS  Google Scholar 

  15. O. Mauritz and U. Ekenberg, Phys. Rev. B 60, R8505 (1999)

    Google Scholar 

  16. W. Knap et al., Phys. Rev. B 53, 3912 (1996)

    Google Scholar 

  17. O. Krebs and P. Voisin, Phys. Rev. Lett. 77, 1829 (1996), J.T. Olesberg et al., Phys. Rev. B 64, R201301 (2001), U. Rossler and J. Kainz, Solid State Commun, 121, 313 (2002)

    Article  CAS  Google Scholar 

  18. Z. Wilamowski et al., Physica E 16, 111 (2003), and Phys. Phys. Rev. B 66, 195315 (2002)

    Google Scholar 

  19. S.D. Ganichev et al., Phys. Rev. B 66, 075328 (2002)

    Google Scholar 

  20. M.I. Dyakonov and V.I. Perel’, Sov. Phys.-Solid State 13, 3023 (1972)

    Google Scholar 

  21. For a review, see: J. Fabian and S. Das Sarma, J. Vac. Sci. Technol. B 17, 1708 (1999)

    Google Scholar 

  22. J. Schliemann, J.C. Egues, and D. Loss, preprint cond-mat/0211603

    Google Scholar 

  23. V.I. Mel’nikov and E.I. Rashba, Sov. Phys. JETP 34, 1353 (1972)

    Google Scholar 

  24. A.L. Efros and B.I. Shklovskii, Electronic Properties of Doped Semiconductors, Springer, Heidelberg (1989)

    Google Scholar 

  25. T. Ando, A.B. Fauler, and F. Stern, Rev. Mod. Phys. 54, 437 (1982)

    Article  CAS  Google Scholar 

  26. H.X. Tang et al., in’ Semiconductor Spintronics and Quantum Computation’, (D.D. Awschalom, D. Loss, and N. Samarth, Eds.), Springer, 2002, p. 31, M. Shen, S. Saikin, M.-C. Cheng, V. Privman, preprint cond-mat/0309118

    Google Scholar 

  27. E.Ya. Sherman, Appl. Phys. Lett. 82, 209 (2003)

    Article  CAS  Google Scholar 

  28. E.I. Rashba, Sov. Phys.-Solid State 2, 1109 (1960)

    Google Scholar 

  29. E.I. Rashba and V.I. Sheka, Sov. Phys.-Solid State 3, 1718 (1962)

    Google Scholar 

  30. E.Ya. Sherman, Phys. Rev. B 67, R 161303 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this paper

Cite this paper

Sherman, E.Y., Sharma, S., Ambrosch-Draxl, C. (2004). Nanoscale Random Spin-Orbit Coupling in Low-Dimensional Structures. In: Faulques, E.C., Perry, D.L., Yeremenko, A.V. (eds) Spectroscopy of Emerging Materials. NATO Science Series II: Mathematics, Physics and Chemistry, vol 165. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2396-0_9

Download citation

Publish with us

Policies and ethics