Skip to main content

Part of the book series: Hot Topics in Thermal Analysis and Calorimetry ((HTTC,volume 4))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Colvin, J. R. 1985, Cellulose biosynthesis, in Encyclopedia of Polymer Science and Engineering vol 3, 60–68, John Wiley & Sons, New York.

    Google Scholar 

  2. Daniel, J. R., 1985, Cellulose, structure and properties, in Encyclopedia of Polymer Science and Engineering vol 3, 90–123, John Wiley & Sons, New York.

    Google Scholar 

  3. Soc. Cellulose Chemistry ed., 2000, Cellulose Handbook, Asakura Pub., Tokyo (Japanese).

    Google Scholar 

  4. Hermans, P. and H., Weidinger, A., 1949, X-ray studies on the crystallinity of cellulose, J. Polym. Sci., 4, 135–144.

    CAS  Google Scholar 

  5. Hermans, P. H. and Weidinger, A., 1949, Estimation of crystallinity of some polymer from x-ray intensity measurements, J. Polym. Sci., 4, 709–723.

    CAS  Google Scholar 

  6. Marchesault, R. H. and Howsmon, J. A., 1957, Experimental evaluation of the lateral-order distribution in cellulose, Text. Res. J., 27, 30–41.

    Google Scholar 

  7. Komatsu, N. and Sakata, A., 1958, Preparation of amorphous cellulose and crystallinity measurement, Kogyo Kagaku Zasshi, (Industrial Chemistry J.), (Japanese).

    Google Scholar 

  8. Mann, J., Roldan-Gonzalez, L. and Weillard, H. J., J., 1960, Crystalline modification of cellulose IV Determination of x-ray intensity data, J. Polym. Sci., 42, 165–171.

    Article  CAS  Google Scholar 

  9. Ellis, K. C. and Warwicker, J. O. 1962, A study of the crystal structure of cellulose I, J. Polym. Sci., 56, 339–357.

    Article  CAS  Google Scholar 

  10. Chang, M., 1971, Holding chain model and annealing of cellulose, J. Polym. Sc., Part C, 36, 343–352.

    Google Scholar 

  11. Gardener, K. H. and Blackwell, J., 1974, The structure of native cellulose, Biopolymers, 13, 1975–2001.

    Google Scholar 

  12. Kulshereshtha, A. K., Chudasama, U. P. and Dweltz, V. E., 1975, Analysis of cotton fiber maturity. I. X-ray study of phase transformation in various cottons, J. Appl Polym. Sci., 19, 115–123.

    Google Scholar 

  13. Kolpak, F. J., and Blackwell, J., 1976, Determination of the structure of cellulolse II, Macromolecules, 9, 273–278.

    Article  CAS  Google Scholar 

  14. Sarko, A., 1976, Crystalline polymorphs of cellulose: Prediction of structures and properties, Appl. Polym. Sym., 28, 729–743

    CAS  Google Scholar 

  15. Pertsin, A. T., Nugmanov, O. K., Sopin, V. F., Martchenko, G. N. and Kitaigorodskii, A. I., 1981, Conformation of isolated cellulose helix, Visokomol. Soeg., 23, 2147–2155 (Russian).

    CAS  Google Scholar 

  16. Zugenmaier, P., structure investigations of cellulose derivatives, 1983, J. Appl. Polym. Sci., 37, 223–238.

    CAS  Google Scholar 

  17. Horii, F., Hirai., A. and Kitamaru, R., 1984, Cross-polarization/magic angle spinning 13C-NMR study, molecular chain of native and regenerated cellulose, in Polymers of Fibers and Elastomers, Arthur J. C., ed., ACS Symp. Ser., 260, A. Chem., Soc., Wahington D.C., 27–42.

    Google Scholar 

  18. Kataoka, Y. and Kondo, T., 1998, FT-IR microscopic analysis of changing cellulose crystalline sturcutre during wood cell wall formation., Macromolecules, 31, 760–764.

    CAS  Google Scholar 

  19. Hainze, T. J. and Glasser W. G., 1996, Cellulose derivatives, modification, characterization and nanosturctures, ACS Symp. Ser., 688, Am. Chem. Soc., Washington DC.

    Google Scholar 

  20. Mikhailow, G. P., Artukhov, A. I. and Shevelv, V. A., 1969, Study on molecular motion of cellulose and its derivatives by dielectric and NMR methods, Vysokomol. Soeg., 11, 553–563 (Russian).

    Google Scholar 

  21. Hatakeyama, T. Nakamura, K. and Hatakeyama, H., 1982, Studies on heat capacity of cellulose and lignin by differential scanning calorimetry, Polymer, 23 1801–1804.

    CAS  Google Scholar 

  22. Kamide, K. and Saito, M., 1985 Thermal analysis of cellulose acetate solids with total degrees of substitution of 0.49, 1.75, 2.46 and 2.92. Polymer J., 17, 919–928.

    CAS  Google Scholar 

  23. Kamide, K., Okajima, K., Kowsaka, K., Matsui, T., Nomura, S. and Hikichi, K., 1985, Effect of the distribution of substitution of the sodium salt of carboxymethylcellulose on its absorbency toward aqueous liquid, Polym. J., 17, 909–918.

    CAS  Google Scholar 

  24. Nakamura, K., Hatakeyama, T. and Hatakeyama H., 1996. Heat capacity of the carboxymethylcelluose-water system near the glass transition”, Kobunshi Ronbunsyu (J. Soc. Polym. Sci. Technol.) 53(12), 860–865 (Japanese).

    CAS  Google Scholar 

  25. Hatakeyama, H. and Hatakeyama, T., 1974, Formation of hydrogen bonding by heat-treatment of amorphous cellulose. Sen-i Gakkaishi, (J. Soc. Textile Sci. Technol. Japan), 30, T214–T220.

    CAS  Google Scholar 

  26. Hatakeyama, H. Hatakeyama, T. and Nakano, J., 1974, Studies on hydrogen-bond formation of amorphous cellulose, Cellulose Chem. Technol., 8, 495–509.

    Google Scholar 

  27. Yano, S., Hatakeyama, H. and Hatakeyama, T., 1976, Effect of hydrogen bond formation on dynamic mechanical properties of amorphous cellulose. J. Appl. Polym. Sci., 20, 3221–3231.

    Article  CAS  Google Scholar 

  28. Hatakeyama, H., Hatakeyama, T. and Nakano, J., 1976, The rffect of hydrogen bond formation on the structure of amorphous cellulose, J. Appl. Polym. Sci., Symp., 28, 743–750.

    CAS  Google Scholar 

  29. Hatakeyama, H. and Hatakeyama, T., 1981, Structural change of amorphous cellulose by water-and heat-treatment, Makromol. Chem., 182, 1655–1668.

    Article  CAS  Google Scholar 

  30. Alfthan, E. and deRuvo A., 1973, Glass transition temperatures of oligosaccharides, Polymer 14, 329–330.

    Article  CAS  Google Scholar 

  31. Hatakeyama, H., Yoshida, H., Nakano, J., 1976, “Studies on the isothermal crystallization of D-glucose and cellulose oligosaccharides by differential scanning calorimetry”, Carbohydrate Res., 47, 203–211.

    Article  CAS  Google Scholar 

  32. Hatakeyama, T., Yoshida, H., Nagasaki, C. and Hatakeyama, H., 1976, Differential scanning calorimetric studies on phase transition of glucose and cellulose oligosaccharides”, Polymer, 17, 559–562.

    Article  CAS  Google Scholar 

  33. Hatakeyama, H. and Hatakeyama, T., 1977, “Fractionation of cellulose oligosaccharides by gel permeation chromatography”, Mokuzai Gakkaishi, 23, 228–231.

    CAS  Google Scholar 

  34. Hatakeyama, H., Nagasaki, C. and Yurugi, T., 1976, “Relation of certain infrared bands to conformational changes of cellulose and cellulose oligosaccharides”, Carbohydrate Research, 48, 149–158.

    Article  CAS  Google Scholar 

  35. Franks, F ed., Water, A Comprehensive Ttreatise, 1972, vol. 1 The physics and physical chemistry of water, vol 2, Water in crystalline hydrates, Aqueous solutions of simple nonelectrolytes, vol. 3 Aqueous solutions of simple electrolytes, vol.4 Aqueous solutions of amphiphiles and macromolecules, vol. 5 Water in disperse systems, vol 6, Recent advances, vol 7, Water and aqueous solutions at subzero temperatures, Plenum press, New York.

    Google Scholar 

  36. Errede, L. A., 1991, Molecular interpretations of sorption in polymers, Part I, Springer-verlag, Berlin.

    Google Scholar 

  37. Waigh, T. A., Jenkins, P. J. V. and Donald, A. M., 1996, Quantification of water in carbohydrate lamellae using SANS, Faraday Discuss., 103, 325–337.

    Article  CAS  Google Scholar 

  38. Hatakeyama, H. and Hatakeyama, T., 1998, Water-Polymer Interaction, Thermochimica Acta 308, 3–22.

    Article  CAS  Google Scholar 

  39. Hatakeyama, T., Ikeda, Y. and Hatakeyama, H., 1987, “Structural change of the amorphous region of cellulose in the presence of water”, “Wood and Cellulose”, (Eds. J. F. Kennedy et al.), Ellis Horwood Ltd., Chichester, Ch.2, 23.

    Google Scholar 

  40. Magne, F. C., Fortas, H. J. and, Wakeham, H., 1947, A calorimetric investigation of moisture in textile fibers, J. Am., Chem., Soc., 69, 1896–1902.

    Article  CAS  Google Scholar 

  41. Preston, J. M. and Tawde, G. P., 1956, Freezing point depression in assemblages of moist fibres, J. Tex. Inst, 47, T157–65.

    Google Scholar 

  42. Neal, J. L. and Goring, D. A. I., 1969, Interaction of cellulose with liquid water accessibility, determination from thermal expansion, J. Polym. Sci., Part C, 28, 103–113.

    Google Scholar 

  43. Newns, A. C., 1973, Sorption and desorption kinetics of the cellulose and water system. Part2. Low concentration on the lowest sorption limits of the hysteresis loop, J. Chem. Faraday I, 64, 444–448.

    Google Scholar 

  44. Froix, M. F. and Nelson, R., 1975, The interaction of water with cellulose from nuclear magnetic resonance relaxation times, Macromolecules, 8, 726–730.

    Article  CAS  Google Scholar 

  45. Nelson, R. A., 1977, The determination of moisture transition in cellulosic materials by differential scanning calorimetry, J. Appl. Polym. Sci., 21, 645–654.

    Article  CAS  Google Scholar 

  46. Hatakeyama, T., Nakamura, K. and Hatakeyama, H., 1979, Determination of bound water contents absorbed on polymers by differential scanning calorimetry, Netsu, 6, 50–52. (Japanese)

    CAS  Google Scholar 

  47. Hatakeyama, T., Ikeda, Y. and Hatakeyama, H., 1987, Effect of bound water on structural change of regenerated cellulose. Makromol. Chem., 188, 1875–1884.

    Article  CAS  Google Scholar 

  48. Nakamura, K., Hatakeyama, T. and Hatakeyama, H., 1981, Studies on Bound Water of Cellulose by Differential Scanning Calorimetry, Textile Res. J., 51, 607.

    CAS  Google Scholar 

  49. Nakamura, K., Hatakeyama, T. and Hatakeyama, H., 1983, Effect of Bound Water on Tensile Properties of Native Cellulose, Textile Res. J., 53, 682–688.

    CAS  Google Scholar 

  50. Nakamura, K., Hatakeyama T. and Hatakeyama, H., 1981, Relationship Between Official Regain and Bound Water in Cellulose, Sen-i Gakkaishi (J. Soc. Fibre Scoi, and Technol. Japan), 37, T533–T535.

    Google Scholar 

  51. Hatakeyama, T., Nakamura, K. and Hatakeyama, H., 1990, Thermal analysis of bound water in polysaccharides, in Cellulose Sources and Exploitation (J. F. Kennedy et al. Eds.), Ellis Horwood, Chichster, Ch 2, 13–19.

    Google Scholar 

  52. Hatakeyama, T. and Hatakeyama, H., 1985, Heat capacity of water-cellulose and water-oligosaccharides systems, in Cellulose and its Derivatives: Chemistry, Biochemistry and Applications (J. F. Kennedy et al. Eds.), Ellis Horwood, Chichester, Chapter, 7, 87–94.

    Google Scholar 

  53. Pyda, M., 2001, Conformational contribution to the heat capacity of the starch and water system, J. Polym. Sci., Polym. Phys., 39, 3038–3054.

    CAS  Google Scholar 

  54. Pyda, M., 2002, Conformational heat capacity of interaction systems of polymer and water, Macromolecules, 35, 4009–4016.

    Article  CAS  Google Scholar 

  55. Hatakeyama, T., Nakamura, K. and Hatakeyama, H., 1988, Determination of bound water content in polymers by DAT, DSC and TG, Thermochimica Acta, 123, 153–161.

    Article  CAS  Google Scholar 

  56. Hatakeyama, T., Nakamura, K. and Hatakeyama, H., 2000, Vaporization of bound water associated with cellulose fibres, Thermochimica Acta, 352–353, 233–239.

    Google Scholar 

  57. Yano, S. and Kitano, T., 1996, Dynamic viscoelastic properties of polymeric materials, in Handbook of Applied Polymer Processing Technology, Chapter 4, Cheremisinoff N. P., Cheremisinoff P. N., eds. Marcel Dekker Inc.

    Google Scholar 

  58. Yano, S., Hatakeyama, H. and Hatakeyama, T., 1976, Effect of hydrogen bond formation on dynamic mechanical properties of amorphous cellulose, J. Appl. Polym. Sci., 20, 3221–3231.

    Article  CAS  Google Scholar 

  59. Manave, S., Iwata, M. and Kamide, K., 1986, Dynamic mechanical absorptions observed for regenerated cellulose solids in the temperature range from 20 to 600 K, Polym. J., 18, 1–14.

    Google Scholar 

  60. Yano, S. and Hatakeyama, H., 1988, Dynamic viscoelasticity and structural changes of regenerated cellulose during water sorption, Polym. 29, 566–570.

    Article  CAS  Google Scholar 

  61. Yano, S., Hatakeyama, H. and Hatakeyama, T., 1989, The Dynamic viscoelasticity of cellulose in water, in Cellulose and Wood (ed. C. Schuerch) John Wiley and Sons, N. Y 389–402.

    Google Scholar 

  62. Zhou, S., Tashiro, K., Hongo, T., Shirataki, H., Yamane, C. and Ii, T., 2001, Influence of water on structure and mechanical properties of regenerated cellulose studied by an organized combination of infrared spectra, x-ray diffraction, and dynamic viscoelastic data measured as functions of temperature and humidity, Macromolecules, 34, 1274–1280.

    CAS  Google Scholar 

  63. Morra, M., ed., 2001, Water in Biomaterials Surface Sscience and Bbiomembrane, John Wiley and Sons., Chichester.

    Google Scholar 

  64. Tsurumi, T., Osawa, N., Hitaka, H., Hirasaki, T., Yamaguchi, K., Manabe, S. and Yamashiki, T., 1990, Structure of cuprammonium regenerated cellulose hollow fiber (BMM Hollow fiber) for virus removel, Polym. J., 22, 751–758.

    CAS  Google Scholar 

  65. Boyle, N. G., McBrierty, V. J. and Douglass, D. C., A study of the behavior of water in Nafion memebranes, Macromolecules, 98, 75–80.

    Google Scholar 

  66. Hatakeyama, T., Yamamoto, S., Hirose, S. and Hatakeyama, H., 1989, Structural change of water restrained in cellulosic hollow fibers, in Cellulose and Wood (ed. C. Schuerch), John Wiley and Sons, New York, 431–446.

    Google Scholar 

  67. Kimura, M., Hatakeyama, T. and Nakano, J., 1974, DSC study on recrystallization of amorphouys cellulose with water, J. Appl. Polym. Sci., 18, 3069–3076.

    Article  CAS  Google Scholar 

  68. Hatakeyama, H., Hatakeyama, T. and Nakamura, K., 1983, Relationship between Hydrogen Bonding and Water in Cellulose, Journal of Applied Polymer Science. Symposia., 37, 979–991.

    CAS  Google Scholar 

  69. Hatakeyama, T. and Hatakeyama, H., 1992, Molecular relaxation of cellulosic polyelectrolytes with water, in Viscoelasticity of Biomaterials (W. G. Glasser and H. Hatakeyama eds.), ACS Symposium Series 489, ACS, Washington DC, Ch.22, 329–340.

    Google Scholar 

  70. Hatakeyama, T., Bahar, N. and Hatakeyama, H., 1991, “Liquid Crystalline State of Water-Carboxymethylcellulose Systems Substituted with Mono-and Divalent Cations”, Sen-i Gakkaishi (J. Soc. Textile Sci. Technol. Japan) 47, 417–420.

    CAS  Google Scholar 

  71. Tsuchida, E. and Abe, K., 1986, Polyelelctrolyte complexes, in Developments in Ionic Polymers-2, Wilson, A. D. Prosser, H. J. eds. Elsevier Applied Science Pub., London, Chapter 5, 191–265.

    Google Scholar 

  72. Nakamura, K., Hatakeyama, T. and Hatakeyama, H., 1987, “DSC Studies on monovalent and divalent cation salts of carboxymethylcellulose in highly concentrated aqueous solutions”, in “Wood and Cellulose” (Eds. J. F. Kennedy et al.) Ellis Horwood Ltd., Chichester, Ch. 10, 97–103.

    Google Scholar 

  73. Kamide, K., Yasuda, K. and Okajima, K., 13CNMR study on gelation of aqueous carboxymethylcellulose with total degree of substitution of 0.39 solution induced by metal cations. Polym. J., 20, 259–268 (1988).

    CAS  Google Scholar 

  74. Berthold, J., Desbrières, J., Rinaudo, M. and Salmén, L., 1994, Types of adsorbed water in relation to the ionic groups and their counter-ions for some cellulose derivatives, Polym., 35, 5729–5736.

    Article  CAS  Google Scholar 

  75. Bhaskar, G., Ford, J. L. and Hollinger D. A., 1998, Thermal analysis of the water uptake by hydrocolloids, Thermochimica Acta, 322, 153–165.

    Article  CAS  Google Scholar 

  76. Matsumoto, T. and Ito, D., 1990. Viscoelastic and nuclear magnetic resonance studies on molecular mobility of carboxymethylcellulose-calcium complex in concentrated aqueous systems. J. Chem. Soc. Faraday Trans, 86, 829–832.

    CAS  Google Scholar 

  77. Hatakeyama, T., Hatakeyama, H. and Nakamura, K., 1995, “Non-freezing water content of mono-and divalent cation salts of polyelectrolyte-water systems studied by DSC”, Thermochimica Acta, 253, 137–148.

    Article  CAS  Google Scholar 

  78. Hoffman, K. and Hatakeyama, H., 1994, 1H n.m.r. Relaxation studies and lineshape analysis of aqueous aodium carboxymethylcellulose, Polymer, 35, 2749–2758

    Google Scholar 

  79. Nakamura, K., Hatakeyama, T. and Hatakeyama, H., 1996 “Heat capacity of the carboxymethylcelluose-water system near the glass transition”, Kobunshi Ronbunsyu, 53, 860–865 (Japanese).

    CAS  Google Scholar 

  80. Kamide, K. and Okajima, K., 1981, Determination of distribution of sodium sulfate groups in glucopyranose units of sodium cellulose sulfate by 13C and 1H nuclear magnetic resonance analysis, Polym. J., 13, 163–166.

    CAS  Google Scholar 

  81. Hatakeyama, H. and Hatakeyama, T., 1991, Mesomorphic properties of polyelectrolytes with water, in Properties of Ionic Polymers Natural and Synthetic, L. Salmen and Myat Htun (editors), STFI-meddelande, a 989, p123–147.

    Google Scholar 

  82. Hatakeyama, T., Yoshida, H. and Hatakeyama, H., 1987, “A differential scanning calorimetry study of the phase transition of the water-sodium cellulose sulfate system”, Polym., 28, 1282–1286.

    Article  CAS  Google Scholar 

  83. Hatakeyama, H., Iwata, H. and Hatakeyama, T., 1987, 1H and 23Na NMR studies of the interaction between water and sodium cellulose sulfate, in Wood and Cellulose, (Eds. J. F. Kennedy et al.), Ellis Horwood Ltd., Chichester, Ch, 4, 39–46.

    Google Scholar 

  84. Hatakeyama, T., Yoshida, H. and Hatakeyama, H., 1995, The liquid crystalline state of water-sodium cellulose sulphate systems studied by DSC and WAXS. Thermochimica Acta, 266, 343–354.

    Article  CAS  Google Scholar 

  85. Hatakeyama, H. and Hatakeyama, T., 1990, Nuclear magnetic relaxation studies of water-cellulose and water-sodium cellulose sulfate systems, in Cellulose: Structural and Functional Aspects (J. F. Kennedy et al. Eds.), Ellis Horwood, Chichster, Ch 14, 131–136.

    Google Scholar 

  86. Hatakeyama, H., Yoshida and H. and Hatakeyama, T., 1985, Study of the Interaction between water and cellulose sulfate sodium salt by DSC and NMR, Cellulose and it’s Derivatives (J. F. Kennedy et al. Eds.), Ellis Horwood, Chichester, Chapter, 21, 255–262.

    Google Scholar 

  87. Hatakeyama, H., Nakamura, K. and Hatakeyama, T., 1989, DSC and NMR studies on the water-cellulosic polyelectroyte systems, in Cellulose and Wood (ed. C. Schuerch), John Wiley and Sons, N.Y., 419–429.

    Google Scholar 

  88. Hatakeyama H. and Hatakeyama, T., 1990, “Nuclear magnetic relaxation studies of water-cellulose and water-sodium cellulose sulfate system”, in Cellulose: Structural and Functional Aspects (J. F. Kennedy et al. Eds.), Ellis Horwood, Chichester, Ch 14, 131.

    Google Scholar 

  89. Woessner, D. E. and Snowden, Jr., B. S., 1970, Pulsed Nmr study of water in agar gels, J. Colloid Interface Sci., 34, 290–299.

    CAS  Google Scholar 

  90. Werbopwyj, R. S. and Gray, D. C., 1976, Liquid crystalline structure in aqueous hjydroxypropyl cellulose solution, Mol. Cryst. Liq. Cryst. 34, 97–103.

    Google Scholar 

  91. Werbopwyj, R. S. and Gray, D. C., 1980, Ordered phase formation in concentrated hydroxypropylcellulose solutions, Macromolelcules, 13, 69–78.

    Google Scholar 

  92. Tseng, S-L., Valente, A. and Gray, D. C., 1981, Cholecteric liquid crystalline phase based on (acetoxylpropyl)cellulose, Macromolecules, 14, 715–719.

    Article  CAS  Google Scholar 

  93. Hatakeyama, T. Yoshida, H. and Hatakeyama, H., 1990 DSC study on water in polysaccharide gels, in Cellulose, Structural and Functional Aspects, (J. F. Kennedy et al. Eds.), Ellis Horwood, Chichster, Ch 39, 305–310.

    Google Scholar 

  94. Hatakeyama, T. and Hatakeyama, H., 1993, Thermal properties of water around the cross-linking networks in cellulose pseudo hydrogels”; in “Cellulosics: Chemical, Biochemical and Material Aspects”, (J. F. Kennedy, G. O. Phillips and P. A. Williams eds.), Ellis Horwood, Chichester, Chap. 32, 225–230.

    Google Scholar 

  95. Kato, T., Yokoyama, M. and Takahashi, A., 1978, Melting temperatures of thermally reversible gels, IV. Methyl cellulose-water gels., Colloid & Polym. Sci., 256, 15–21.

    CAS  Google Scholar 

  96. Sarkar, N., 1979, Thermal gelation properties of methyl and hydroxypropyl methylcellulose, J. Appl. Polym. Sci., 24, 1073–1087.

    Article  CAS  Google Scholar 

  97. Hirrien, M., Desbrieres, J. and Rinaudo, M., 1996, Physical properties of methylcelluloses in relation with the condition for cellulose modification, Carbohydrate Polym., 31, 243–252.

    Article  CAS  Google Scholar 

  98. Nishinari, K. Hofmann, K. E., Moritaka, H., Kohyama, K. and Nishinari, N., 1997, Gelsol transition of methylcellulose, Macromol., Chem., Phys., 198, 1217–1226.

    Article  CAS  Google Scholar 

  99. Desbrieres, J., Hirrien, M. and Rinaudo, M., 1998, A calorimetric study of methylcellulose gelation, Carbohydrate Polym., 37, 145–152.

    CAS  Google Scholar 

  100. Desbrieres, J., Hirrien, M. and Rinaudo, M., 1998, Relation between the conditions of modification and the properties of cellulose derivatives thermogelation of methylcellulose, in Cellulose Derivatives, Mmodification, Characterization and Nanostructures, Heinze, T J., Glasser, W. G., eds., ACS Symp. Ser., 688, Am. Chem., Soc., Washington D. C., 332–348.

    Google Scholar 

  101. Ford, J. L., 1999, Thermal analysis of hydroxypropylmethylcellulose and methylcellulose powders, gels and matrix tablets. Inter. J. Pharmaceutics, 10. 209–228.

    Google Scholar 

  102. Li., L., Thangamathesvaran P. M., Yue, C. Y., Tam, K. C., Hu X. and Lam., Y. C., 2001, Gel network structure of methylcellulose in water, Macromolecules, 17, 8062–8068.

    CAS  Google Scholar 

  103. Rinaudo M. and Desbrieres, J., 2000, Thermally induced gels obtained with some amphiphilic polysaccharide derivatives: synthesis, mechanism and properties, in Hydrocolloids-Part 1, Nishinari, K. ed., Elsevier Sci., B. V. 111–123.

    Google Scholar 

  104. Li, L., Thermal gelation of methylcellulose in water, 2002 Scaling and thermoreversibility, Macromolecules, 35, 5990–5998.

    Google Scholar 

  105. Shafizadeh, F., 1971, Thermal behavior of carbohydrates, J. Polymer Sci., Part C, 36, 21–51.

    Google Scholar 

  106. Shafizadeh F. and Fu, Y. L. 1973, Pyrolysis of cellulose, Carbohydrte Res., 29, 113–122.

    CAS  Google Scholar 

  107. Shafizadeh F., McGinnins, G.D., Susott, R. A. Philpot C. W., 1970, Thermodynamic properties of 1,6-anahydrohexopyranose crystals, Carbohyd. Res., 15, 165–178.

    CAS  Google Scholar 

  108. Nguyenm T., Zavarin E. and Barrall II, E. M., 1981, Thermal analysis of lignocelllose materials, Part I. Unmodified materials, J. Macromol. Sci. Rev. C20, 1–65 (1981) Part II modified materials, C21 1–60.

    Google Scholar 

  109. Ozawa, T., 1965, A new method of analyzing thermogravimetric data, Bull. Chem. Soc. Japan, 38, 1881–1886.

    CAS  Google Scholar 

  110. Flynn, J. H. and Wall, L. A., 1966, A quick, direct method for the determination of activation enery from thermograimetric data, Polymer Letter, 4, 323–328.

    CAS  Google Scholar 

  111. Kaloustian, J., Pauli, A. M. and Pastor, J., 2001, Kinetic study of the thermal decompositions of biopolymers extracted from various plants, J. Thermal. Anal. Cal., 63, 7–20.

    CAS  Google Scholar 

  112. Hatakeyama T. and Liu, Z. ed., 1998, Handbook of Thermal Analysis, John Wiley & Sons, pp148.

    Google Scholar 

  113. Kleinert T. N. 1972, Aging of cellulose Pt. VI. Natural ageing of linen over long periods of time, Holzforshung, 26, 46–51.

    Article  CAS  Google Scholar 

  114. Hatakeyama T., Nakazawa, J., Iijima, M. and Hatakeyama, H., 2002, Thermogravimetric study on life-time prediction of cellulose fabrics, Sen-i Gakaishi, (J. Soc. Fibre Sci. Technol. Japan), 58, 405–408.

    CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

(2005). Thermal Properties of Cellulose and its Derivatives. In: Thermal Properties of Green Polymers and Biocomposites. Hot Topics in Thermal Analysis and Calorimetry, vol 4. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2354-5_3

Download citation

Publish with us

Policies and ethics