Skip to main content

The Bacterial Flagellar Motor

  • Conference paper

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 160))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armitage, J. P. 1999. Bacterial tactic responses. Adv Microb Physiol. 41:229–89.

    Article  Google Scholar 

  2. Berg, H.C., and E.M. Purcell. 1977. Physics of chemoreception. Biophys. J. 20:193–219.

    Article  ADS  Google Scholar 

  3. Berg, H.C., Manson, M.D., and Conley, M.P. (1982). Dynamics and energetics of flagellar rotation in bacteria. In Prokaryotic and eukaryotic flagella, W.B. Amos and J.G. Duckett, eds. (Cambridge: Cambridge University Press), pp. 1–31.

    Google Scholar 

  4. Berg, H.C. and Turner, L. (1993). Torque generated by the flagellar motor of Escherichia coli. Biophys J. 65. 2201–2216.

    Article  ADS  Google Scholar 

  5. Berry, R.M. (1993). Torque and switching in the bacterial flagellar motor: an electrostatic model. Biophys. J. 64:961–973.

    Article  ADS  Google Scholar 

  6. Berry, R.M., Turner, L and Berg, H.C. (1995). Mechanical limits of bacterial flagellar motors probed by electrorotation. Biophys. J. 69:280–286.

    Article  ADS  Google Scholar 

  7. Berry, R.M. and Berg H.C. (1997) Absence of a barrier to backwards rotation in the bacterial flagellar motor, demonstrated with optical tweezers. Proc. Natl. Acad. Sci. USA. 94:14433–14437.

    Article  ADS  Google Scholar 

  8. Berry, R.M. and Berg H.C. (1998). Torque generation by the flagellar motor of Escherichia coli while driven backwards. Biophys J. 76:580–587.

    Article  Google Scholar 

  9. Berry, R.M. and Armitage, J.P. (1999). The bacterial flagella motor. Adv. Microb. Physiol. 41:291–337.

    Article  Google Scholar 

  10. Berry, R.M. (2000) Theories of Rotary Motors, Philos. Trans. R. Soc. Lond. B. Biol. Sci. 355:503–511.

    Article  Google Scholar 

  11. Buechner, M., Delcour, A.H., Martinac, B., Adler, J., and Kung, C. (1990). Ion channel activities in the Escherichia coli outer membrane. Biochim.Biophys.Acta. 1024: 111–121.

    Article  Google Scholar 

  12. Blair, D.F. and Berg, H.C. (1988). Restoration of torque in defective flagellar motors. Science. 242: 1678–1681.

    Article  ADS  Google Scholar 

  13. Blair, D.F. and Berg, H.C.(1990). The MotA protein of E. coli is a proton-conducting component of the flagellar motor. Cell 60: 439–449.

    Article  Google Scholar 

  14. Blair, D. F. and Berg, H. C. (1991). Mutations in the MotA protein of Escherichia coli reveal domains critical for proton conduction. J.Mol.Biol.221: 1433–1442.

    Google Scholar 

  15. Blair D.F. (1995) How bacteria sense and swim. Annu. Rev. Microbiol. 49: 489–522.

    Article  Google Scholar 

  16. Block, S.M. and Berg, H.C. (1984). Successive incorporation of force generating units in the bacterial rotary motor. Nature. 309: 470–472.

    Article  ADS  Google Scholar 

  17. Braun T. F., and D. F. Blair. 2001. Targeted disulfide cross-linking of the MotB protein of Escherichia coli. Biochemistry 40:13051–13059.

    Article  Google Scholar 

  18. Chen X, Berg HC. 2000a. Torque-speed relationship of the flagellar rotary motor of Escherichia coli. Biophys. J.78:1036–1041.

    Article  ADS  Google Scholar 

  19. Chen X, Berg HC. 2000b. Solvent-isotope and pH effects on flagellar rotation in Escherichia coli. Biophys. J. 78:2280–2284.

    Article  ADS  Google Scholar 

  20. Coppin C. M., Pierce D. W., Hsu L., and R. D. Vale. 1997. The load dependence of kinesin’s mechanical cycle. Proc. Natl. Acad. Sci. U S A. 94:8539–8544.

    Article  ADS  Google Scholar 

  21. Elston, T.C. and Oster, G. (1997). Protein turbines. I: The bacterial flagellar motor. Biophys. J. 73: 703–721.

    Article  ADS  Google Scholar 

  22. Francis, N. R., Sosinsky, G. E., Thomas, D. and D.J. DeRosier. 1994. Isolation, Characterization and structure of bacterial flagellar motors containing the switch complex. J. Mol. Biol. 235:1261–1270.

    Article  Google Scholar 

  23. Fung, D.C. and Berg, H.C. (1995). Powering the flagellar motor of Escherichia coli with an external voltage source. Nature. 375: 809–812

    Article  ADS  Google Scholar 

  24. Hirota, N., and Y. Imae. 1983. Na+-driven flagellar motors of an alkalophilic bacillus strain YN-1. J. Biol. Chem. 258:10577–10581.

    Google Scholar 

  25. Huxley, A.F. and Simmons, R.M. (1971). Proposed mechanism of force generation in striated muscle. Nature. 233:533–538.

    Article  ADS  Google Scholar 

  26. Ishihara, A., Segall, J.E., Block, S.M., and Berg, H.C. (1983). Coordination of flagella on filamentous cells of Escherichia coli. J.Bacteriol. 155: 228–237.

    Google Scholar 

  27. Jones, C.J., Macnab, R.M., Okino, H., and Aizawa, S.-I. (1990). Stoichiometric analysis of the flagellar hook-(basal-body) complex of Salmonella typhimurium. J.Mol.Biol. 212: 377–387.

    Article  Google Scholar 

  28. Khan, S., Meister, M., and Berg, H.C. (1985). Constraints on flagellar rotation. J.Mol.Biol. 184: 645–656.

    Article  Google Scholar 

  29. Khan, S., Dapice, M., and Reese, T.S. (1988). Effects of mot gene expression on the structure of the flagellar motor. J. Mol. Biol. 202: 575–584.

    Article  Google Scholar 

  30. Khan, S., Zhao, R., and T. S. Reese. (1998). Architectural features of the Salmonella typhimurium flagellar motor switch revealed by disrupted C-rings. J. Struct. Biol. 122:311–319.

    Article  Google Scholar 

  31. Kojima, S. and D. F. Blair. 2001. Conformational change in the stator of the bacterial flagellar motor. Biochemistry. 40: 13041–13050.

    Article  Google Scholar 

  32. Kudo, S., Magariyama, Y., and Aizawa, S.-I. (1990). Abrupt changes in flagellar rotation observed by laser dark-field microscopy. Nature. 346: 677–680.

    Article  ADS  Google Scholar 

  33. Lauger, P. (1988). Torque and rotation rate of the flagellar motor. Biophys. J. 53: 53–65.

    Article  ADS  Google Scholar 

  34. Liu, J.Z., Dapice, M., and Khan, S. (1990). Ion selectivity of the Vibrio alginolyticus flagellar motor. J.Bacteriol. 172: 5236–5244.

    Google Scholar 

  35. Lowe, G., Meister, M., and Berg, H.C. (1987). Rapid rotation of flagellar bundles in swimming bacteria. Nature. 325: 637–640.

    Article  ADS  Google Scholar 

  36. Lloyd, S. A., Whitby, F. G., Blair, D., and C. P. Hill. 1999. Structure of the C-terminal domain of FliG, a component of the rotor in the bacterial flagellar motor. Nature. 400:472–475.

    Article  ADS  Google Scholar 

  37. Macnab, R.M. and Han, D.P. (1983). Asynchronous switching of flagellar motors on a single cell. Cell. 32:109–117.

    Article  Google Scholar 

  38. Macnab, R.M. (1996). Flagella and motility. In Escherichia coli and Salmonella:Cellular and Molecular Biology. F.C. Neidhardt, R. Curtiss, I, J.L. Ingraham, E.C.C. Lin, G. Lowe, B. Magasanik, W.S. Reznikoff, M. Riley, M. Schaechter, and H.E. Umbarger, eds. (Washington: ASM), pp. 123–145.

    Google Scholar 

  39. Matthews, M. A. A., Tang, H. L., and D. F. Blair. 1998. Domain analysis of the FliM protein of Escherichia coli. J. Bacteriol. 180:5580–5590.

    Google Scholar 

  40. McCarter, L.L. (1994a). MotX, the channel component of the sodium-type flagellar motor. J.Bacteriol 176: 5988–5998.

    Google Scholar 

  41. McCarter, L.L. (1994b). MotY, a component of the sodium-type flagellar motor. J.Bacteriol. 176: 4219–4225.

    Google Scholar 

  42. Meister, M., Lowe, G., and Berg, H.C. (1987). The proton flux through the bacterial flagellar motor. Cell. 49:643–650.

    Article  Google Scholar 

  43. Meister, M. and Berg, H.C. (1987). The stall torque of the bacterial flagellar motor. Biophys. J. 52: 413–419.

    Article  ADS  Google Scholar 

  44. Meister, M., Caplan, S.R., and Berg, H.C. (1989). Dynamics of a tightly coupled mechanism for flagellar rotation. Biophys. J. 55: 905–914.

    Article  Google Scholar 

  45. Namba, K., and F. Vonderviszt. 1997. Molecular architecture of bacterial flagellum. Q. Rev. Biophys. 30:1–65.

    Article  Google Scholar 

  46. Noji, H., Yasuda, R., Yoshida, M., and Kinosita, K. (1997). Direct observation of the rotation of F1-ATPase. Nature 386: 299–302.

    Article  ADS  Google Scholar 

  47. Ravid, S. and Eisenbach, M. (1984). Minimal requirements for rotation of bacterial flagella. J. Bacteriol. 158:1208–1210.

    Google Scholar 

  48. Ryu, W.S., Berry, R.M. and Berg, H.C. (2000) Torque generating units of the flagellar motor of Escherichia coli have a high duty ratio. Nature. 403:444–447.

    Article  ADS  Google Scholar 

  49. Samuel, A.D.T. and Berg, H.C. (1995). Fluctuation analysis of rotational speeds of the bacterial flagellar motor. Proc.Natl.Acad.Sci.USA 92: 3502–3506.

    Article  ADS  Google Scholar 

  50. Samuel AD, Berg HC. 1996. Torque-generating units of the bacterial flagellar motor step independently. Biophys. J. 71:918–923.

    Article  ADS  Google Scholar 

  51. Segall, J.E, S.M. Block, and H.C. Berg. 1986. Temporal comparisons in bacterial chemotaxis. Proc. Natl. Acad. Sci. USA. 83:8987–8991.

    Article  ADS  Google Scholar 

  52. Sharp, L.L., Zhou, J., and Blair, D.F. (1995). Tryptophan-scanning mutagenesis of MotB, an integral membrane protein essential for flagellar rotation in Escherichia coli. Biochemistry 34: 9166–9171.

    Article  Google Scholar 

  53. Shioi, J-I., Matsuura, S., and Y. Imae. 1980. Quantitative measurements of proton motive force and motility in Bacillus subtilis. J. Bacteriol. 144:891–897.

    Google Scholar 

  54. Sosinsky, G.E., Francis, N.R., DeRosier, D.J., Wall, J.S., Simon, M.N. and Hainfeld, J (1992). Mass determination and estimation of subunit stoichiometry of the bacterial hook basal-body flagellar complex of Salmonella typhimurium. By scanning transmission electron microscopy. Proc. Natl. Acad. Sci. 89: 4801–4805.

    Article  ADS  Google Scholar 

  55. Stock, J.B. and Surette, M.G. (1996). Chemotaxis. In Escherichia coli and Salmonella:Cellular and Molecular Biology. F.C. Neidhardt, R. Curtiss, I, J.L. Ingraham, E.C.C. Lin, K.B. Low, B. Magasanik, W.S. Reznikoff, M. Riley, M. Schaechter, and H.E. Umbarger, eds. (Washington: ASM), pp. 1103–1129.

    Google Scholar 

  56. Thomas, D. R., Morgan, D. G., and D. J. DeRosier. 1999. Rotational symmetry of the C ring and a mechanism for the flagellar rotary motor. Proc. Natl. Acad. Sci. USA 96:10134–10139.

    Article  ADS  Google Scholar 

  57. Turner, L., Caplan, S.R., and Berg, H.C. (1996). Temperature-induced switching of the bacterial flagellar motor. Biophys. J. 71: 2227–2233.

    Article  Google Scholar 

  58. Turner, L., Ryu W. S, and H.C. Berg. 2000. Real-time imaging of fluorescent flagellar filaments. J Bacteriol. 182:2793–801.

    Article  Google Scholar 

  59. Washizu, M., Kurahashi, Y., Iochi, H., Kurosawa, O., Aizawa, S.-I., Kudo, S., Magariyama, Y., and Hotani, H. (1993). Dielectrophoretic measurement of bacterial motor characteristics. IEEE Trans.Ind.Applications. 29: 286–294.

    Article  Google Scholar 

  60. Yorimitsu, T., and M. Homma. 2001. Na+-driven flagellar motor of Vibrio. Biochim. Biophys. Acta. 1505: 82–93.

    Article  Google Scholar 

  61. Zhou, J., Lloyd, S.A., and Blair, D.F. (1998a). Electrostatic interactions between rotor and stator in the bacterial flagellar motor. Proc.Natl.Acad.Sci. U.S.A. 95: 6436–6441.

    Article  ADS  Google Scholar 

  62. Zhou J, Sharp LL, Tang HL, Lloyd SA, Billings S, Braun TF, and DF Blair. 1998b. Function of protonatable residues in the flagellar motor of Escherichia coli: a critical role for Asp 32 of MotB. J. Bacteriol. 180:2729–2735.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this paper

Cite this paper

Berry, R.M. (2004). The Bacterial Flagellar Motor. In: Skjeltorp, A.T., Belushkin, A.V. (eds) Forces, Growth and Form in Soft Condensed Matter: At the Interface between Physics and Biology. NATO Science Series II: Mathematics, Physics and Chemistry, vol 160. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2340-5_8

Download citation

Publish with us

Policies and ethics