Skip to main content

The Molecular Complexity of Comets

  • Chapter

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 305))

Abstract

By delivering prebiotic molecules to the Earth, comets could have played a role in the early phases of the development of life on our planet. In order to explore this possibility, we present here an assessment of the molecular content of comets. The current methods of investigations — by both in situ analysis and remote sensing — are reviewed. The present status of our knowledge of the composition of cometary ices is reviewed. We probably now know most of the main components, but we still have a very partial view of the minor ones. A large diversity of composition from comet to comet is observed, so that no “typical comet” can be defined. No clear correlation between the composition and the region of formation of the comets and their subsequent dynamical history can yet be established. A crucial cometary component, both for cometary coma chemistry and for the possible delivery of organics to the Earth, is the (semi-)refractory high molecular-mass organic material present in grains. From the advent of new instrumentation, we can expect the detection of many new molecular species in future bright comets. However, the identification of really complex molecules will need in situ analysis or the return to Earth of nucleus samples.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • A’Hearn, M.F., Millis, R.L., Schleicher, D.G., Osip, D.J. and Birch, P.V. (1995). The ensemble properties of comets: results from narrowband photometry of 85 comets, 1976–1992. Icarus, 118:223–270.

    Article  ADS  Google Scholar 

  • Abe, S., Yano, H., Ebizuka, N., et al. (2002). First results of OH emission from meteor and after glow: search for organics in cometary meteoroids. In Asteroids, Comets, Meteors, ACM 2002, ESA SP-500, 213–216.

    Google Scholar 

  • Altwegg, K., Balsiger, H., and Geiss, J. (1999). Composition of the volatile material in Halley’s coma from in situ measurements. In ISSI workshop Composition and Origin of Cometary Material. Space Scie. Rev., 90:3–18.

    Article  ADS  Google Scholar 

  • Avery, L.W. (1987). Radio and millimetre observations of larger molecules. In Astrochemistry, IAU Symp. No 120, M.S. Vardya & S.P. Tarafdar edts, Reidel, Dordrecht, 187–197.

    Google Scholar 

  • Balsiger, H., Altwegg, K., Gliem, F., Fieth, et al. (2003). Rosetta orbiter spectrometer for ion and neutral analysis ROSINA. ESA SP-1165, in press.

    Google Scholar 

  • Berzelius, J.J. (1834). Über Meteorstein, 4. Meteorstein von Alais. Ann. Phys. Chem., 33:113–123.

    Article  ADS  Google Scholar 

  • Binzel, R.P., Stuart, J.S., Rivkin, A.S., et al. (2002). Exploring the comet component within the Near-Earth Object population. Bull. Amer. Astron. Soc., 34:840.

    ADS  Google Scholar 

  • Biver, N., Bockelée-Morvan, D., Winnberg, A., et al. (2002a). The 1995–2002 longterm monitoring of comet C/1995 O1 (Hale-Bopp) at radio wavelengths. Earth, Moon, Planets, 90:5–14.

    Article  ADS  Google Scholar 

  • Biver, N., Bockelée-Morvan, D., Crovisier, J., et al. (2002b). Chemical composition diversity among 24 comets observed at radio wavelengths. Earth, Moon, Planets, 90:323–333.

    Article  ADS  Google Scholar 

  • Blank, J.G., Miller, G.H., Ahrens, M.J., and Winans, R.E. (2001). Experimental shock chemistry of aqueous amino acid solutions and the cometary delivery of prebiotic compounds. Origins Life Evol. Biosphere, 31:15–51.

    Article  ADS  Google Scholar 

  • Bockelée-Morvan, D., and Crovisier, J. (2002). Lessons of comet Hale-Bopp for coma chemistry: observations and theory. Earth Moon Planets, 89:53–71.

    Article  ADS  Google Scholar 

  • Bockelée-Morvan, D., Crovisier, J., Mumma, M.J., and Weaver, H.A. (2005). The composition of cometary volatiles. In Comets II, M. Festou, H.U. Keller & H.A. Weaver edts, Univ. Arizona Press, Tucson, USA, in press.

    Google Scholar 

  • Bockelée-Morvan, D., Lis, D.C., Wink, et al. (2000). New molecules found in comet C/1995 O1 (Hale-Bopp). Investigating the link between cometary and interstellar material. Astron. Astrophys., 353:1101–1114.

    ADS  Google Scholar 

  • Botta, O., and Bada, J.L. (2002). Extraterrestrial organic compounds in meteorites. Surv. Geophys., 23:411–467.

    Article  ADS  Google Scholar 

  • Brownlee, D.E., Tsou, P., Burnett, D., et al. (1997). The STARDUST mission: returning comet samples to Earth. Meteor. Planet. Scie., 32:A22.

    Google Scholar 

  • Campins, H., and Swindle, T.D. (1998). Expected characterisitics of cometary meteorites. Meteoritics Planet. Scie., 33:1201–1211.

    Article  ADS  Google Scholar 

  • Cernicharo, J., Heras, A.M., Tielens, A.G.G.M., et al. (2001). Infrared Space Observatory’s discovery of C4H2, C6H2, and benzene in CRL 618. Astrophys. J., 546:L123–126.

    Article  ADS  Google Scholar 

  • Cochran, A.L., Cochran, W.D. (2002). A high spectral resolution atlas of comet 122P/de Vico. Icarus, 157:297–308.

    Article  ADS  Google Scholar 

  • Cochran, A.L., Cochran, W.D., and Barker, E.S. (2000). N +2 and CO+ in comets 122P/1995 S1 (de Vico) and C/1995 O1 (Hale-Bopp). Icarus, 146:583–593.

    Article  ADS  Google Scholar 

  • Coradini, A., Capaccioni, F., Drossart, P., et al. (1997). VIRTIS: An imaging spectrometer for the ROSETTA mission. Planet. Space Scie., 46:1291–1304.

    Article  ADS  Google Scholar 

  • Cottin, H., Gazeau, M.C., Benilan, Y., and Raulin, F. (2001a). Polyoxymethylene as parent molecule for the formaldehyde extended source in comet Halley. Astrophys. J., 556:417–420.

    Article  ADS  Google Scholar 

  • Cronin, J.R. (1998). Clues from the origin of the Solar System: meteorites. In The Molecular Origins of Life. A. Brack edt. Cambridge University Press, Cambridge, UK, 119–146.

    Google Scholar 

  • Crovisier, J. (1996). Observational constraints on the composition and nature of comet D/Shoemaker-Levy 9. In The Collision of Comet Shoemaker-Levy 9 and Jupiter, K.S. Noll, H.A. Weaver and P.D. Feldman edts, Cambridge University Press, 31–54.

    Google Scholar 

  • Crovisier, J. (1998). Physics and chemistry of comets: recent results from comets Hyakutake and Hale-Bopp. Answers to old questions and new enigmas. Faraday Discuss., 109:437–452.

    Article  ADS  Google Scholar 

  • Crovisier, J., and Bockelée-Morvan, D. (1999). Remote observations of the composition of cometary volatiles. In ISSI workshop Composition and Origin of Cometary Material. Space Scie. Rev., 90:19–32.

    Article  ADS  Google Scholar 

  • Crovisier, J., Bockelée-Morvan, D., Colom, P., et al. (2004). The composition of ices in comet C/1995 O1 (Hale-Bopp) from radio spectroscopy. Further results and upper limits on undetected species. Astron. Astrophys., 418:1141–1157.

    Article  ADS  Google Scholar 

  • de Bergh, C. (2004). Kuiper Belt: water and organics. This volume.

    Google Scholar 

  • Despois, D., Crovisier, J., Bockelée-Morvan, D., and Biver, N. (2002). Comets and prebiotic chemistry: the volatile component. In Proceedings of the Second European Workshop on Exo/Astrobiology, ESA SP-518, 123–127.

    Google Scholar 

  • DiSanti, M.A., Dello Russo, N., Magee-Sauer, K. et al. (2002). CO, H2CO, and CH3OH in comet 202 C1 Ikeya-Zhang. In Asteroids, Comets, Meteors, ACM 2002, ESA SP-500, 571–574.

    Google Scholar 

  • DiSanti, M.A., Mumma, M.J., Dello Russo, N., and Magee-Sauer, K. (2001). Carbon monoxide production and excitation in comet C/1995 O1 (Hale-Bopp): isolation of native and distributed CO sources. Icarus, 153:361–390.

    Article  ADS  Google Scholar 

  • DiSanti, M.A., Mumma, M.J., Dello Russo, N., Magee-Sauer, K., and Griep, D.M. (2003). Evidence for a dominant native source of carbon monoxide in Comet C/1996 B2 (Hyakutake). J. Geophys. Res. 108(E6):5061.

    Article  Google Scholar 

  • Eberhardt, P. (1999). Comet Halley’s gas composition and extended sources: results from the neutral mass spectrometer on Giotto. In ISSI workshop Composition and Origin of Cometary Material. Space Scie. Rev., 90:45–52.

    Article  ADS  Google Scholar 

  • Farmer, C.B., and Norton, R.H. (1989). A high-resolution atlas of the infrared spectrum of the Sun and the Earth atmosphere from space. NASA RP-1224.

    Google Scholar 

  • Feldman, P.D., Weaver, H.A., and Burgh, E.B. (2002). Far Ultraviolet Spectroscopic Explorer observations of CO and H2 emissions in comet C/2001 A2 (LINEAR). Astrophys. J., 576:L91–L94.

    Article  ADS  Google Scholar 

  • Fomenkova, M.N. (1999). On the organic refractory component of cometary dust. Space Scie. Rev. 90:109–114.

    Article  ADS  Google Scholar 

  • Gibb, E.L., Mumma, M.J., Dello Russo, N., DiSanti, M.A., and Magge-Sauer, K. (2003). Methane in Oort Cloud comets. Icarus, 165:391–406.

    Article  ADS  Google Scholar 

  • Gibb, E.L., Mumma, M.J., DiSanti, M.A., Dello Russo, N., and Magee-Sauer, K. (2002). An infrared search for HDO in comets. In Asteroids, Comets, Meteors 2002, ESA SP-500, 705–708.

    Google Scholar 

  • Henry, F., Bockele-Morvan, D., Crovisier, J., and Wink, J. (2002). Observations of rotating jets of carbon monoxide in comet Hale-Bopp with the Plateau de Bure Interferometer. Earth Moon Planets, 90:57–60.

    Article  ADS  Google Scholar 

  • Huebner, W.F., and Benkho, J. (1999). From coma abundances to nucleus composition. In ISSI workshop Composition and Origin of Cometary Material. Space Scie. Rev., 90:117–130.

    Article  ADS  Google Scholar 

  • Irvine, W.M., Goldsmith, P.F., and Hjalmarson, A. (1987). Chemical abundances in molecular clouds. In Interstellar Processes, D.J. Hollenbach & H.A. Thronson, Jr edts, Reidel Publishing Company, 561–609.

    Google Scholar 

  • Irvine, W.M., Schloerb, F.P., Crovisier, J., Fegley, B., and Mumma, M.J. (2000). Comets: a link between interstellar and nebular chemistry. In Protostars and Planets IV, V. Mannings, A. Boss and S. Russell edts, Univ. Arizona Press, Tucson, Arizona, 1159–1200.

    Google Scholar 

  • Kawakita, H., and Watanabe, J. (2003). Fluorescence e ciencies of monodeuterio-methane in comets: toward the determination of the deuterium/hydrogen ratio in methane. Astrophys. J., 583:534–539.

    Article  ADS  Google Scholar 

  • Kissel, J., and Krueger, F.R. (1987). The organic component in dust from comet Halley as measured by the PUMA mass-spectrometer on board VEGA 1. Nature 326:755–760.

    Article  ADS  Google Scholar 

  • Kissel, J., Krueger, F.R., and Roessler, K. (1997). Organic chemistry in comets from remote and in situ observations. In Comets and the Origin and Evolution of Life, P.J. Thomas, C.F. Chyba and C.P. McKay edts, Springer-Verlag, New York, 69–109.

    Google Scholar 

  • Lellouch, E. (1996). Chemistry induced by the impacts: Observations. In The Collision of Comet Shoemaker-Levy 9 and Jupiter, K.S. Noll, H.A. Weaver and P.D. Feldman edts, Cambridge University Press, 213–242.

    Google Scholar 

  • Lis, D.C., Mehringher, D., Benford, D., et al. (1999). New molecular species in comet C/1995 O1(Hale-Bopp) observed with the Caltech Submillimeter Observatory. Earth Moon Planets, 78:13–20.

    Article  ADS  Google Scholar 

  • Lodders, K., and Osborne, R. (1999). Perspectives on the comet-asteroid-meteorite link. Space Scie. Rev., 90:289–297.

    Article  ADS  Google Scholar 

  • Millar, T.J. (2004). Large organics in the interstellar gas and their evolution. This volume.

    Google Scholar 

  • Molster, F. (2004). IDPs and implications for astrobiology. This volume.

    Google Scholar 

  • Morbidelli, A., Chambers, J., Lunine, J.I., et al. (2000). Source regions and timescales for the delivery of water to Earth. Meteoritics Planet. Scie., 35:1309–1320.

    Article  ADS  Google Scholar 

  • Mumma, M.J., Dello Russo, N., DiSanti, M.A., et al. (2001). Organic composition of C/1999 S4 (LINEAR): a comet formed near Jupiter? Science, 292:1334–1339.

    Article  ADS  Google Scholar 

  • Mumma M. J., DiSanti M. A., Dello Russo N., et al. (2003). Remote infrared observations of parent volatiles in comets; a window on the early Solar System. Adv. Space Res., 31:2563–2575.

    Article  ADS  Google Scholar 

  • Oró, J. (1961). Comets and the formation of biochemical compounds on the primitive earth. Nature, 190:389–390.

    Article  ADS  Google Scholar 

  • Pietrogrande, M.C., Tellini, I., Szopa, C., et al. (2003). Interpretation of chromatographic data recovered from space missions: decoding of complex chromatograms by Fourier analysis. Planet. Space Scie., 51:581–590.

    Article  ADS  Google Scholar 

  • Rodgers, S.D. and Charnley, S.B. (2001a). Organic synthesis in the coma of comet Hale-Bopp? Month. Not. Roy. Astron. Soc., 320:L61–L64.

    Article  ADS  Google Scholar 

  • Rosenbauer, H., Fuselier, S.A., Ghielmetti, A., et al. (1999). The COSAC experiment on the lander of the Rosetta mission. Adv. Space Res., 23(2):333–340.

    Article  ADS  Google Scholar 

  • Soderblom, L.A., Britt, D.T., Brown, R.H., et al. (2004). Short-wavelength infrared (1.3-2.6 µm) observations of the nucleus of comet 19P/Borrelly. Icarus, 167:100–112.

    Article  ADS  Google Scholar 

  • Szopa, C., Sternberg, R., Raulin, F., and Rosenbauer, H. (2003). What can we expect from the in situ chemical investigation of a cometary nucleus by gas chromatography: First results from laboratory studies. Planet. Space Scie., 51:863–877.

    Article  ADS  Google Scholar 

  • Thiemann, W.H.-P., Rosenbauer, H., and Meierhenrich, U.J. (2001). Conception of the “chirality-experiment” on ESA’s mission Rosetta to comet 46P/Wirtanen. Adv. Space Res., 27(2):323–328.

    Article  ADS  Google Scholar 

  • Thomas, P.J., Chyba, C.F., and McKay, C.P. (Edts) (1997). Comets and the Origin and Evolution of Life. Springer, New York.

    Google Scholar 

  • Whipple, F.L. (1950). A comet model. I. The acceleration of comet Encke. Astrophys. J., 111:375–394.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Crovisier, J. (2004). The Molecular Complexity of Comets. In: Ehrenfreund, P., et al. Astrobiology: Future Perspectives. Astrophysics and Space Science Library, vol 305. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2305-7_8

Download citation

Publish with us

Policies and ethics