Skip to main content

Organic Molecules in Planetary Atmospheres

  • Chapter

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 305))

Abstract

In the Solar System three types of atmospheric environments can be found: the highly oxidized Earth-like atmospheres, the mildy reduced atmospheres of Titan, Pluto and Triton, and the highly reduced atmospheres of the giant planets. In the terrestrial atmospheres carbon, the most abundant element in the Universe after hydrogen, helium and oxygen, is mostly combined with oxygen to form carbon dioxide and carbon monoxide. On Earth methane exists in some significant quantity also, and this is due to the presence and action of life. In the non-terrestrial atmospheres, methane is very abundant and it is the carrier of most of the carbon. In these atmospheres other organics are formed from photochemical processes with methane at the origin. Titan has the most complex atmosphere when it comes to organic molecules. Titan’s atmosphere may represent a low-temperature version of the conditions similar to those existant on Earth before the appearance of life.

The goal of this paper is to provide a short overview of the current knowledge on organic molecules in planetary atmospheres.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atreya, S.K. (1986). Atmospheres and Ionospheres of the Outer Planets and Their Satellites. Springer, Berlin.

    Google Scholar 

  • Atreya, S.K., P.R. MahaVy, H.B. Niemann, M.H. Wong, and T.C. Owen (2003). Composition and Origin of the Atmosphere of Jupiter-an Update, and Implications For the Extrasolar Giant Planets. Plan. Space Sci. 21, 105–112.

    Article  ADS  Google Scholar 

  • Baines, K.H., R.W. Carlson, and L.W. Kamp (2002). Fresh ammonia ice clouds in Jupiter: Spectroscopic Identification, Spatial Distribution and Dynamical Implications. Icarus 159, 74–94.

    Google Scholar 

  • Bézard, B. C. de Bergh, D. Crisp, J-P. Maillard (1990). The Deep Atmosphere of Venus Revealed by High-Resolution Nightside Spectra. Nature 345, June 7, 1990, 508–511.

    Article  ADS  Google Scholar 

  • Cabane, M., E. Chassefière and G. Israel (1992). Formation and Growth of Photochemical Aerosols in Titan’s Atmosphere. Icarus 96, 176–189.

    Article  ADS  Google Scholar 

  • Cruikshank, D.P., and J. Apt (1984). Methane on Triton-Physical state and distribution. Icarus 58, 306–311.

    Article  ADS  Google Scholar 

  • Cruikshank, D.P., R.H. Brown, R.N. Clark (1987). Nitrogen on Triton. Icarus 58, 293–305.

    Article  ADS  Google Scholar 

  • Cruikshank, D.P. (1987). Pluto, Charon, and Triton: A Review of Their Physical Parameters, Atmospheres, and Surfaces. Bulletin of the American Astronomical Society, Vol. 19, 858.

    ADS  Google Scholar 

  • Courtin, R., D. Gautier, and C.P. McKay (1995). Titan’s Thermal Emission Spectrum: Reanalysis of the Voyager Infrared Measurements. Icarus 114, 144–162.

    Article  ADS  Google Scholar 

  • Coustenis, A. and B. Bézard (1995). Titan’s Atmosphere from Voyager Infrared Observations: IV. Latitudinal Variations of Temperature and Composition. Icarus 115, 126–140.

    Article  ADS  Google Scholar 

  • Coustenis, A, and F. Taylor (1999). Titan-the Earth like Moon. Series on Atmospheric, Oceanic and Planetary Physics, vol. 1, World Scientific.

    Google Scholar 

  • Donahue, T.M., and R.R. Hodges, Jr. (1992) Methane measurement by the Pioneer Venus large probe neutral mass spectrometer. In Lunar and Planetary Inst., Papers Presented to the International Colloquium on Venus, p.29.

    Google Scholar 

  • Donahue, T.M., D.H. Grinspoon, R.E. Hartle, and R.R. Hodges Jr. (1997). Ion/Neutral Escape of Hydrogen and Deuterium: Evolution of Water. In Venus II: Geology, Geophysics, Atmosphere and Solar Wind Environment (S.W. Bougher, D.M. Hunten and R.J. Phillips, Eds.), The University of Arizona Press, 385–414.

    Google Scholar 

  • Fink, U., B.A. Smith, D.C. Benner, J.R. Johnson, and H.J. Reitsema (1980). Detection of a CH4 Atmosphere on Pluto. Icarus 44, 62–71.

    Article  ADS  Google Scholar 

  • Florensky, C.P., V.P. Volkov, and O.V. Nikolaeva (1978). A Geochemical Model of the Venus Troposphere. Icarus 33, 537–553.

    Article  ADS  Google Scholar 

  • Fortes, A.D. 2000. Exobiological Implications of a Possible Ammonia-Water Ocean Inside Titan. Icarus 146, 444–452.

    Article  ADS  Google Scholar 

  • Fridlund, C.V.M. (2000). Darwin — The Infrared Space Interferometry Mission. ESA Bulletin 103, 20–25. Link at esapub.esrin.esa.it/bulletin/bullet103/fridlund103.pdf

    Google Scholar 

  • GriYth, C.A., T. Owen, G.A. Miller, and T. Geballe (1998). Transient Clouds in Titan’s Lower Atmosphere. Nature 395, 575–578.

    Article  ADS  Google Scholar 

  • Hart, M.H. (1975). A Possible Atmosphere for Pluto. Icarus, vol. 21, 242–247.

    Article  ADS  Google Scholar 

  • Herbert, F. and B.R. Sandel (1991). CH4 and haze in Triton’s lower atmosphere. J. Geoph. Res. 96, 19,241–19,252.

    ADS  Google Scholar 

  • Hourdin, F., O. Talagrand, R. Sadourny, R. Courtin, D. Gautier, and C. McKay (1995). Numerical Simulation of the General Circulation of the Atmosphere of Titan. Icarus 117, 358–374.

    Article  ADS  Google Scholar 

  • Irwin, P. (2003) Giant Planets of Our Solar System. Springer-PRAXIS.

    Google Scholar 

  • Khare, B.N., C. Sagan, E.T. Arakawa, F. Suits, T.A. Callott and M.W. Williams (1984). Optical Constants of Organic Tholins Produced in a Simulated Titatian Atmosphere: From Soft X-Rays to Microwave Frequencies. Icarus 60, 127–137.

    Article  ADS  Google Scholar 

  • Korablev, O.I. (2002). Solar Occultation Measurements of the Martian Atmosphere on the Phobos Spacecraft: Water Vapor ProWle, Aerosol Parameters, and Other Results. Solar System Research 36, 12–34.

    Article  ADS  Google Scholar 

  • Korablev, O.I., M. Ackerman, V.A. Krasnopolsky, V.I. Moroz, C. Muller, A.V. Rodin, and S.K. Atreya (1993). Planet. Space Sci. 41, 441–451.

    Article  ADS  Google Scholar 

  • Kossacki, K.J., and R.D. Lorenz (1996). Hiding Titan’s Ocean: Densification and Hydrocarbon Storage in an Icy Regolith. Planet. Space Sci. 44, 1029–1037.

    Article  ADS  Google Scholar 

  • Krasnopolsky, V.A. and V.A. Parshev (1979). On the Chemical Composition of the Troposphere and Cloud Layer of Venus Based on the Venera 11 and 12 and Pioneer Venus Measurements. Cosmic. Res. 17, 763–770.

    ADS  Google Scholar 

  • Krasnopolsky, V.A., and J.B. Pollack (1994). H2)-H2SO4 Systems in Venus’ Clouds and OCS, CO and H2SO4 ProWles in Venus’ Troposphere. Icarus 109, 58–78.

    Article  ADS  Google Scholar 

  • Krasnopolsky, V.A., and D.P. Cruikshank (1995). Photochemistry of Triton’s atmosphere and ionosphere. J. Geoph. Res. 100, 21271–21286.

    Article  ADS  Google Scholar 

  • Krasnopolsky, V.A., G.L. Bjoraker, M.J. Mumma, and D.E. Jennings (1997). High-Resolution Spectroscopy of Mars at 3.7 and 8 mm: a Sensitive Search for H2O, H2CO, HCl, and CH4, and Detection of HDO. J. Geoph. Res., 102, 6526–6534.

    ADS  Google Scholar 

  • Krasnopolsky, V.A., and D.P. Cruikshank (1999). Photochemistry of Pluto’s atmosphere and ionosphere near perihelion. J. Geoph. Res. 104, 21979–21996.

    Article  ADS  Google Scholar 

  • Kuiper, G.P. (1944). Titan: A Satellite with an Atmosphere. Astrophys. J. 100, 378–383.

    Article  ADS  Google Scholar 

  • Lara, L.M., W.H. Ip, and R. Rodrigo (1997). Photochemical Models of Pluto’s Atmosphere. Icarus 130, 16–35.

    Article  ADS  Google Scholar 

  • Lara, L.M., E. Lellouch, J.J. Lopez-Moreno, and R. Rodrigo (1996). Vertical Distribution of Titan’s Atmospheric Neutral Constituents. J. Geoph. Res. 101, 23261–23283.

    Article  ADS  Google Scholar 

  • Lebonnois, S., E.L.O. Bakes, and C.P. McKay (2002). Transition from Gaseous Compounds to Aerosols in Titan’s Atmosphere. Icarus 159, 505–517.

    Article  ADS  Google Scholar 

  • Lebonnois, S, D. Toublanc, F. Hourdin and P. Rannou (2001). Seasonal Variations of Titan’s Atmospheric Composition. Icarus 52, 384–406.

    Article  ADS  Google Scholar 

  • Lederberg, J. (1965). Signs of Life: Criterion-System of Exobiology. Nature 207, 9–13.

    Article  ADS  Google Scholar 

  • Lellouch, E. (1996). Chemistry induced by the impacts: Observations. In: The Collision of Comet Shoemaker-Levy 9 and Jupiter (Noll, K.S., Waever, H.A., Feldman P.D., Eds.), Science Institute Symposium Series 9, Cambridge University Press, Cambridge, 213–242.

    Google Scholar 

  • Lorenz, R.D. (1996). Pillow Lava on Titan: Expectations and Constraints on Cryo-Volcanic Processes. Planet. Space Sci. 44, 1021–1028.

    Article  ADS  Google Scholar 

  • Lorenz, R.D., J.I. Lunine, P.G. Withers, and C.P. McKay (1997). Photochemically Driven Collapse of Titan’s Atmosphere. Science 275, 642–644.

    Article  ADS  Google Scholar 

  • Lorenz, R.D., C.P. McKay, and J.I. Lunine (1999). Analytic Investigation of Climate Stability on Titan: Sensitivity to Volatile Inventory. Plan. Space Sci. 47, 1503–1515.

    Article  ADS  Google Scholar 

  • Loveday, J.S., R.J. Nelmes, M. Guthrie, S.A. Belmonte, D.R. Allan, D.D. Klug, J.S. Tse, and Y.P. Handa (2001). Stable Methane Hydrate Above 2 GPa and the Source of Titan’s Atmospheric Methane. Nature 410, 661–663.

    Article  ADS  Google Scholar 

  • Lovelock, J.E. (1965). A Physical Basis for Life Detection Experiments. Nature 207, 568–570.

    Article  ADS  Google Scholar 

  • Maguir, W.S. (1977). Martian isotopic ratios and upper limits for possible minor constituents as derived from Mariner 9 infrared spectrometer data. Icarus 32, 85–97.

    Article  ADS  Google Scholar 

  • Malin, M.C, and K.S. Edgett (2000). Evidence for Recent Groundwater Seepage and Surface RunoV on Mars. Science 288, 2330–2335.

    Article  ADS  Google Scholar 

  • Marten, A., J. Rosenqvist, D. Moreau, and R. Moreno (1995). New Photochemical Assessments on Mars Derived from Millimeter Observations. Unpublished, private communication.

    Google Scholar 

  • McKay, C.P., J.B. Pollack, J.I. Lunine and R. Courtin (1993). Coupled Atmosphere-Ocean Models of Titan’s Past. Icarus 102, 88–98.

    Article  ADS  Google Scholar 

  • McKay, C.P., S.C. Martin, C.A. gri;th, R.M. Keller (1997). Temperature Lapse Rate and Methane in Titan’s Troposphere. Icarus 129, 498–505.

    Article  ADS  Google Scholar 

  • Moreno, R., A Marten, H.E. Matthews, and Y. Biraud (2003). Long-term evolution of CO, CS and HCN in Jupiter after the impacts of comet Shoemaker-Levy 9. Plan. Space Sci. 51, 591–611

    Article  ADS  Google Scholar 

  • Moses, J.I., B. Bézard, E. Lellouch, G.R. Gladstone, H. Feuchtgruber, and M. Allen (2000). Photochemistry of Saturn’s Atmosphere: I. Hydrocarbon Chemistry and Comparisons with ISO Observations. Icarus 143, 244–298.

    Article  ADS  Google Scholar 

  • Owen, T.C., T.L. Roush, D.P. Cruikshank, J.L. Elliot, L.A. Young, C. de Bergh, B. Schmitt, T.R. Geballe, R.H. Brown, and M.J. Bartholomew (1993). Surface ices and the atmospheric composition of Pluto. Science 261, 745–748.

    Google Scholar 

  • Pollack, J.B., J.B. Dalton, D. Grinspoon, R.B. Wattson, R. Freedman, D. Crisp, D.A. Allen, B. Bézard, C. de Bergh, L.P. Giver, Q. Ma, and R. Tipping (1993). Near Infrared Light from Venus’ Nightside: A Spectroscopic Analysis. Icarus 103, 1–42.

    Article  ADS  Google Scholar 

  • Rages, K.A., and J.B. Pollack (1991). Hazes and Clouds in Triton’s Atmosphere. Bulletin of the American Astronomical Society, Vol. 23, 1207.

    ADS  Google Scholar 

  • Rannou, P. M. Cabane, R. Botet, and E. Chassefière (1997). A New Interpretation of Scattered Light Measurements at Titan’s Limb. J. Geoph. Res. 102, 10997–11013.

    Article  ADS  Google Scholar 

  • Raulin, F. (1997). Titan’s Organic Chemistry and Exobiology. in Huygens-Science, Payload and Mission, ESA SP 117, 219–229.

    ADS  Google Scholar 

  • Roos-Serote, M. A.R. Vasavada, L. Kamp, P. Drossart, P. Irwin, C. Nixon, and R.W. Carlson (2000). Proximate humid and dry regions in Jupiter’s atmosphere indicate complexe local meteorology. Nature 406 (May 11, 2000), 158–160.

    Article  ADS  Google Scholar 

  • Sagan, C., W.R. Thompson, R. Carlson, D. Curnett, and C. Hord (1993). A Search for Life on Earth From the Galileo Spacecraft.

    Google Scholar 

  • Samuelson, R.E., N.R. Nath, and A. Borysow (1997). Gaseous Abundances and Methane Supersaturation in Titan’s Troposphere. Plan. Space Sci. 45, 959–980.

    Article  ADS  Google Scholar 

  • Schindler, T.L. and J.F. Kasting (2000). Synthetic Spectra of Simulated Terrstrial Atmospheres Containing Possible Biomarker Gases. Icarus 145, 262–271.

    Article  ADS  Google Scholar 

  • Tokano, T., F.M. Neubauer, and M. Laube (2001). Three-Dimensional MOdeling of the Tropospheric Methane Cycle on Titan. Icarus 153, 130–147.

    Article  ADS  Google Scholar 

  • West, R.A., and P.H. Smith (1991). Evidence for Aggregate Particles in the Atmospheres of Titan and Jupiter. Icarus 90, 330–333.

    Article  ADS  Google Scholar 

  • Wong, A.S, S.K. Atreya, and T. Encrenaz (2003). Chemical Markers of Possible Hot Spots on Mars. J. Geoph. Res. 108, 5026–5036.

    Article  Google Scholar 

  • Wong, M.H. (2001). Hydrocarbons and consensible volatiles in Jupiter’s Galileo Entry Probe Site. Ph.D. Thesis, University of Michigan, USA.

    Google Scholar 

  • Yung, Y.L, M. Allen, and J.P. Pinto (1984). Photochemistry of the atmosphere of Titan: Comparison between model and observations. Astroph. J. 55, 465–506.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Roos-Serote, M. (2004). Organic Molecules in Planetary Atmospheres. In: Ehrenfreund, P., et al. Astrobiology: Future Perspectives. Astrophysics and Space Science Library, vol 305. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2305-7_6

Download citation

Publish with us

Policies and ethics