Skip to main content

The Prebiotic Atmosphere of the Earth

  • Chapter
Astrobiology: Future Perspectives

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 305))

Abstract

Because of the paucity of geologic samples dating back to the early Earth, trying to unveil the nature of the prebiotic terrestrial environment is as frustrating as it is fascinating. An understanding of the characteristics of this period in our planet’s history is, however, crucial to studies of the origin of Life. Recent progress in astrophysics, geochemistry and simulation of planetary accretion provide some new and precious constraints but also question some of the previously admitted “facts”. The aim of this chapter is to highlight some of the important open-ended questions about the environment of the prebiotic Earth (for a more comprehensive review, see Kasting and Catling, 2003). The implications of recent theories of terrestrial planets formation on the origin and early evolution of the atmosphere are discussed, in particular, along with the various influences of our faint but active young Sun during this period.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armitage, P. J., Clarke, C. J., and Palla, F. (2003). Dispersion in the lifetime and accretion rate of T Tauri discs. MNRAS, 342:1139–1146.

    Article  ADS  Google Scholar 

  • Armstrong, J. C., Wells, L. E., and Gonzalez, G. (2002). Rummaging through Earth’s Attic for Remains of Ancient Life. Icarus, 160:183–196.

    Article  ADS  Google Scholar 

  • Bada, J. L., Bigham, C., and Miller, S. L. (1994). Impact melting of frozen oceans on the early Earth: Implications for the origin of life. Proc. Natl. Acad. Sci., 91:1248–1250.

    Article  ADS  Google Scholar 

  • Baraffe, I., Chabrier, G., Allard, F., and Hauschildt, P. H. (1998). Evolutionary models for solar metallicity low-mass stars: mass-magnitude relationships and color-magnitude diagrams. A&A, 337:403–412.

    ADS  Google Scholar 

  • Baross, J. A. and Hoggman, S. E. (1985). Submarine Hydrothermal Vents and Associated Gradient Environments as Sites for the Origin and Evolution of Life. Origins of Life, 15:327.

    Article  ADS  Google Scholar 

  • Beichman, C. A., Woolf, N. J., and Lindensmith, C. A., editors (1999). The Terrestrial Planet Finder (TPF): a NASA Origins program to search for habitable planets. JPL Publications.

    Google Scholar 

  • Brasier, M., Green, O., Lindsay, J., and Steele, A. (2004). Earth’s Oldest (3.5 Ga) Fossils and the ‘Early Eden Hypothesis’: Questioning the Evidence. Origins of Life and Evolution of the Biosphere, 34:257–269.

    Article  ADS  Google Scholar 

  • Brasseur, G. and Solomon, S. (1984). Aeronomy of the middle atmosphere: Chemistry and physics of the stratosphere and mesosphere. Dordrecht, D. Reidel Publishing Co., 1984, 457 p.

    Google Scholar 

  • Canup, R. M. and Asphaug, E. (2001). Origin of the Moon in a giant impact near the end of the Earth’s formation. Nat, 412:708–712.

    Article  ADS  Google Scholar 

  • Carslaw, K. S., Harrison, R. G., and Kirkby, J. (2002). Cosmic Rays, Clouds, and Climate. Science, 298:1732–1737.

    Article  ADS  Google Scholar 

  • Chambers, J. E. (2001). Making More Terrestrial Planets. Icarus, 152:205–224.

    Article  ADS  Google Scholar 

  • Chambers, J. E. and Wetherill, G. W. (1998). Making the Terrestrial Planets: N-Body Integrations of Planetary Embryos in Three Dimensions. Icarus, 136:304–327.

    Article  ADS  Google Scholar 

  • Chen, G. Q. and Ahrens, T. J. (1997). Erosion of terrestrial planet atmosphere by surface motion after a large impact. Physics of the Earth and Planetary Interiors, 100:21–26.

    Article  ADS  Google Scholar 

  • Chyba, C. F. (1987). The cometary contribution to the oceans of primitive Earth. Nat, 330:632–635.

    Article  ADS  Google Scholar 

  • Commeyras, A., Boiteau, L., Vandenabeele-Trambouze, O., and Selsis, F. (2004a). Peptide Emergence, Evolution and Selection on the Primitive Earth. II. The Primary Pump Scenario. In Adv. Astrobiology and Biogeophysics Series, in press, Springer.

    Google Scholar 

  • Commeyras, A., Taillades, J., Collet, H., Boiteau, L., Vandenabeele-Trambouze, O., Pascal, R., Rousset, A., Garrel, L., Rossi, J., Biron, J., Lagrille, O., Plasson, R., Souaid, E., Danger, G., Selsis, F., Dobrijvic, M., and Martin, H. (2004b). Dynamic Co-evolution of Peptides and Chemical Energetics, a Gateway to the Emergence of Homochirality and the Catalytic Activity of Peptides. Origins of Life and Evolution of the Biosphere, 34:35–55.

    Article  ADS  Google Scholar 

  • Crowley, T. J. (1983). The geologic record of climatic change. Rev. Geophys. Space Phys., 21:828–877.

    Article  ADS  Google Scholar 

  • Dauphas, N. (2003). The dual origin of the terrestrial atmosphere. Icarus, 165:326–339.

    Article  ADS  Google Scholar 

  • Dauphas, N. and Marty, B. (2002). Inference on the nature and the mass of Earth’s late veneer from noble metals and gases. J. Geophys. Res., 107:12–1.

    Article  Google Scholar 

  • Delsemme, A. H. (2000). 1999 Kuiper Prize Lecture: Cometary Origin of the Biosphere. Icarus, 146:313–325.

    Article  ADS  Google Scholar 

  • Genda, H. and Abe, Y. (2003). Survival of a proto-atmosphere through the stage of giant impacts: the mechanical aspects. Icarus, 164:149–162.

    Article  ADS  Google Scholar 

  • Guinan, E. F. and Ribas, I. (2002). Our Changing Sun: The Role of Solar Nuclear Evolution and Magnetic Activity on Earth’s Atmosphere and Climate. In ASP Conf. Ser. 269: The Evolving Sun and its Influence on Planetary Environments, page 85.

    Google Scholar 

  • Halliday, A. N. (2004). Mixing, volatile loss and compositional change during impact-driven accretion of the Earth. Nat, 427:505–509.

    Article  ADS  Google Scholar 

  • Hunten, D. M., Donahue, T. M., Walker, J. C. G., and Kasting, J. F. (1989). Escape of atmospheres and loss of water. In Origin and Evolution of Planetary and Satellite Atmospheres, pages 386–422.

    Google Scholar 

  • Kasting, J. F. and Catling, D. (2003). Evolution of a Habitable Planet. ARA&A, 41:429–463.

    Article  ADS  Google Scholar 

  • Kasting, J. F. and Grinspoon, D. H. (1991). The faint young Sun problem. In The Sun in Time, pages 447–462. Univ. Arizona Press.

    Google Scholar 

  • Kleine, T., Mnker, C., Mezger, K., and Palme, H. (2002). Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf-W chronometry. Nat, 418:952–955.

    Article  ADS  Google Scholar 

  • Knauth, L. P. and Lowe, D. R. (1978). Oxygen isotope geochemistry of cherts from the Onverwatch Group (3.4 billion years), Traansval Group, South Africa, with implications for secular variations in the isotopic composition of cherts. J. Geol., 41:209–222.

    Google Scholar 

  • Kouchi, A., Kudo, T., Nakano, H., Arakawa, M., Watanabe, N., Sirono, S., Higa, M., and Maeno, N. (2002). Rapid Growth of Asteroids Owing to Very Sticky Interstellar Organic Grains. ApJ Lett., 566:L121–L124.

    Article  ADS  Google Scholar 

  • Lammer, H., Selsis, F., Penz, T., Amerstorfer, U. V., Lichtenegger, H. I. M., Kolb, C., and Ribas, I. (2004). Atmospheric evolution and the history of water on Mars. In Water on Mars, pages 25–44. Springer.

    Google Scholar 

  • Lammer, H., Selsis, F., Ribas, I., Guinan, E. F., Bauer, S. J., and Weiss, W. W. (2003). Atmospheric Loss of Exoplanets Resulting from Stellar X-Ray and Extreme-Ultraviolet Heating. ApJ Lett., 598:L121–L124.

    Article  ADS  Google Scholar 

  • Levison, H. F., Lissauer, J. J., and Duncan, M. J. (1998). Modeling the Diversity of Outer Planetary Systems. AJ, 116:1998–2014.

    Article  ADS  Google Scholar 

  • Libourel, G., Marty, B., and Humbert, F. (2003). Nitrogen solubility in basaltic melt. Part I. Effect of oxygen fugacity. Geochim. Cosmochim. Acta, 67:4123–4135.

    Article  ADS  Google Scholar 

  • Lunine, J. I., Chambers, J., Morbidelli, A., and Leshin, L. A. (2003). The origin of water on Mars. Icarus, 165:1–8.

    Article  ADS  Google Scholar 

  • Lyo, A.-R., Lawson, W. A., Mamajek, E. E., Feigelson, E. D., Sung, E., and Crause, L. A. (2003). Infrared study of the ? Chamaeleontis cluster and the longevity of circumstellar discs. MNRAS, 338:616–622.

    Article  ADS  Google Scholar 

  • Maher, K. A. and Stevenson, D. J. (1988). Impact frustration of the origin of life. Nat, 331:612–614.

    Article  ADS  Google Scholar 

  • Makino, J., Fukushige, T., Funato, Y., and Kokubo, E. (1998). On the mass distribution of planetesimals in the early runaway stage. New Astronomy, 3:411–416.

    Article  ADS  Google Scholar 

  • Marty, B. and Dauphas, N. (2003a). “Nitrogen isotopic compositions of the present mantle and the Archean biosphere” Reply to comment by P. Cartigny and M. Ader. Earth Planet. Sci. Lett., 216:433–439.

    Article  ADS  Google Scholar 

  • Marty, B. and Dauphas, N. (2003b). The nitrogen record of crust-mantle interaction and mantle convection from Archean to Present. Earth Planet. Sci. Lett., 206:397–410.

    Article  ADS  Google Scholar 

  • Mojzsis, S. J., Arrhenius, G., McKeegan, K. D., Harrison, T. M., Nutman, A. P., and Friend, C. R. L. (1996). Evidence for life on Earth before 3,800 million years ago. Nat, 384:55–59.

    Article  ADS  Google Scholar 

  • Monnard, P., Apel, C. L., Kanavarioti, A., and Deamer, D. W. (2002). Influence of Ionic Inorganic Solutes on Self-Assembly and Polymerization Processes Related to Early Forms of Life: Implications for a Prebiotic Aqueous Medium. Astrobiology, 2:139.

    Article  ADS  Google Scholar 

  • Morbidelli, A., Chambers, J., Lunine, J. I., Petit, J. M., Robert, F., Valsecchi, G. B., and Cyr, K. E. (2000). Source regions and time scales for the delivery of water to Earth. Meteoritics and Planetary Science, 35:1309–1320.

    Article  ADS  Google Scholar 

  • Morbidelli, A., Petit, J.-M., Gladman, B., and Chambers, J. (2001). A plausible cause of the late heavy bombardment. Meteoritics and Planetary Science, 36:371–380.

    Article  ADS  Google Scholar 

  • Napier, W. M. (2004). A mechanism for interstellar panspermia. MNRAS, 348:46–51.

    Article  ADS  Google Scholar 

  • Navarro-Gonzalez, R., McKay, C. P., and Nna Mvondo, D. (2001). A possible nitrogen crisis for Archaean life due to reduced nitrogen fixation by lightning. Nat, 412:61–64.

    Article  ADS  Google Scholar 

  • Oberbeck, V. and Fogelman, G. (1989). Impacts and the origin of life. Nat, 339:434.

    Article  ADS  Google Scholar 

  • Owen, T. C. and Bar-Nun, A. (2001). Contributions of Icy Planetesimals to the Earth’s Early Atmosphere. Origins of Life and Evolution of the Biosphere, 31:435–458.

    Article  ADS  Google Scholar 

  • Pavlov, A. A., Kasting, J. F., Brown, L. L., Rages, K. A., and Freedman, R. (2000). Greenhouse warming by CH 4 in the atmosphere of early Earth. J. Geophys. Res., 105:11981–11990.

    Article  ADS  Google Scholar 

  • Pinti, D. L., Hashizume, K., and Matsuda, J.-i. (2001). Nitrogen and argon signatures in 3.8 to 2.8 Ga metasediments: clues on the chemical state of the archean ocean and the deep biosphere. Geochim. Cosmochim. Acta, 65:2301–2315.

    Article  ADS  Google Scholar 

  • Raymond, S. N., Quinn, T., and Lunine, J. I. (2004). Making other Earths: Dynamical simulations of terrestrial planets formation and water delivery. Icarus, 168:1–17.

    Article  ADS  Google Scholar 

  • Ryder, G. (2003). Bombardment of the Hadean Earth: Wholesome or Deleterious? Astrobiology, 3:3.

    Article  ADS  MATH  Google Scholar 

  • Rye, R., Kuo, P. H., and Holland, H. D. (1995). Atmospheric carbon dioxide concentrations before 2.2 billions years ago. Nat, 378:603–605.

    Article  ADS  Google Scholar 

  • Sackmann, I.-J. and Boothroyd, A. I. (2003). Our Sun. V. A Bright Young Sun Consistent with Helioseismology and Warm Temperatures on Ancient Earth and Mars. ApJ, 583:1024–1039.

    Article  ADS  Google Scholar 

  • Sagan, C. and Mullen, G. (1972). Earth and Mars: Evolution of atmospheres and surface temperature. Science, 177:52–56.

    Article  ADS  Google Scholar 

  • Schrag, D. P., Berner, R. A., Homan, P. F., and Halverson, G. P. (2002). On the initiation of a snowball Earth. Geochemistry, Geophysics, Geosystems, page 1.

    Google Scholar 

  • Sekine, Y., Sugita, S., Kadono, T., and Matsui, T. (2003). Methane production by large iron meteorite impacts on early Earth. J. Geophys. Res., page 6.

    Google Scholar 

  • Selsis, F. (2002). Occurrence and detectability of O 2-rich atmosphere in circumstellar “habitable zones”. In ASP Conf. Ser. 269: The Evolving Sun and its Influence on Planetary Environments.

    Google Scholar 

  • Selsis, F., Despois, D., and Parisot, J.-P. (2002). Signature of life on exoplanets: Can Darwin produce false positive detections? A&A, 388:985–1003.

    Article  ADS  Google Scholar 

  • Shaviv, N. J. (2003). Toward a solution to the early faint Sun paradox: A lower cosmic ray flux from a stronger solar wind. J. Geophys. Res., page 1437.

    Google Scholar 

  • Shock, E.L., Amend, J.P., and Zolotov, M.Y. (2000). The Early Earth vs. the Origin of Life. In Origin of the Earth and Moon, pages 527–543. University of Arizona Press.

    Google Scholar 

  • Sleep, N.H. and Zahnle, K. (2001). Carbon dioxide cycling and implications for climate on ancient Earth. J. Geophys. Res., 106:1373–1400.

    Article  ADS  Google Scholar 

  • Sleep, N. H., Zahnle, K., and Neuho, P. S. (2001). Initiation of clement conditions on the earliest Earth. PNAS, 98:3666–3672.

    Article  ADS  Google Scholar 

  • Turcotte, D. L., Morein, G., Roberts, D., and Malamud, B. D. (1999). Catastrophic Resurfacing and Episodic Subduction on Venus. Icarus, 139:49–54.

    Article  ADS  Google Scholar 

  • Valley, J. W., Peck, W. H., King, E. M., and Wilde, S. A. (2002). A cool Early Earth. Geology, 30:351–354.

    Article  ADS  Google Scholar 

  • Volonte, S., Laurance, R., Whitcomb, G., Karlsson, A., Fridlund, M., Ollivier, M., Gondoin, P., Guideroni, B., Granato, G. L., Amils, R., and Smith, M. (2000). Darwin: the infrared space interferometer. Technical report, ESA.

    Google Scholar 

  • Walker, J. C. G., Hays, P. B., and Kasting, J. F. (1981). A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature. J. Geophys. Res., 86:9776–9782.

    Article  ADS  Google Scholar 

  • Weidenschilling, S. J. and Cuzzi, J. N. (1993). Formation of planetesimals in the solar nebula. In Protostars and Planets III, pages 1031–1060.

    Google Scholar 

  • Wells, L. E., Armstrong, J. C., and Gonzalez, G. (2003). Reseeding of early earth by impacts of returning ejecta during the late heavy bombardment. Icarus, 162:38–46.

    Article  ADS  Google Scholar 

  • Whitmire, D. P., Doyle, L. R., Reynolds, R. T., and Matese, J. J. (1995). A slightly more massive young Sun as an explanation for warm temperatures on early Mars. J. Geophys. Res., 100:5457–5464.

    Article  ADS  Google Scholar 

  • Wiechert, U., Halliday, A. N., Lee, D.-C., Snyder, G. A., Taylor, L. A., and Rumble, D. (2001). Oxygen Isotopes and the Moon-Forming Giant Impact. Science, 294:345–348.

    Article  ADS  Google Scholar 

  • Wilde, S. A., Valley, J. W., Peck, W. H., and Graham, C. M. (2001). Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nat, 409:175–178.

    Article  ADS  Google Scholar 

  • Wood, B. E., Mller, H., Zank, G. P., and Linsky, J. L. (2002). Measured Mass-Loss Rates of Solar-like Stars as a Function of Age and Activity. ApJ, 574:412–425.

    Article  ADS  Google Scholar 

  • Zahnle, K. (1998). Origins of Atmospheres. In ASP Conf. Ser. 148: Origins, pages 364–391.

    Google Scholar 

  • Zahnle, K. and Sleep, N. H. (1997). Impacts and the early evolution of life. In Comets and the origin and evolution of life, pages 175–208. Springer New York.

    Google Scholar 

  • Zhang, Y. and Zindler, A. (1993). Distribution and evolution of carbon and nitrogen in Earth. Earth and Planetary Science Letters, 117:331–345.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Selsis, F. (2004). The Prebiotic Atmosphere of the Earth. In: Ehrenfreund, P., et al. Astrobiology: Future Perspectives. Astrophysics and Space Science Library, vol 305. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2305-7_11

Download citation

Publish with us

Policies and ethics