Skip to main content

Coordinate Systems and Flux Bias Error

  • Chapter
Book cover Handbook of Micrometeorology

Part of the book series: Atmospheric and Oceanographic Sciences Library ((ATSL,volume 29))

Abstract

This Chapter examines theoretical and operational aspects of coordinate systems. A distinction is made between the vector basis, a local property of a coordinate system, and the overall coordinate frame consisting of the vector basis and coordinate lines, a global property of the flow that is determined by the flow field in three dimensions. Point measurements can only define the vector basis. Because in field campaigns many components that enter into the mass balance in complex flows are severely under-sampled, a properly chosen coordinate frame for point measurements should optimize our estimates of the surface-air exchange and should maximize information for diagnostics purposes.

The strengths and weaknesses of three operational coordinate systems for point measurements (instrument, natural wind, and planar fit) are examined in detail. That error in scalar fluxes due to coordinate tilt is usually small for small tilt angles does not negate the need for coordinate rotation because the tilt error can introduce a systematic bias to the time integrated flux. On the other hand, it is also important that over-rotation be avoided in post-field data analysis. Tilt errors caused by contamination from the streamwise and cross-wind fluxes should be treated differently.

Appendix B outlines a method for rotation into the planar fit coordinate. The scheme relies on the straightforward vector operation and avoids the need for rotation angles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Batchelor, G. K.: 1967, An Introduction to Fluid Mechanics, Cambridge University Press, New York.

    Google Scholar 

  • Baldocchi, D., Finnigan, J., Wilson, K., Paw U, K. T.: 2000, “On measuring net ecosystem carbon exchange over tall vegetation in complex terrain”, Bound.-Layer Meteorol. 96, 257–291.

    Article  Google Scholar 

  • Bradshaw, P.: 1973, “Effects of streamline curvature on turbulent flow”, AGARDo-graph No. 169, National Technical Information Service, USDept. of Commerce, pp. 125.

    Google Scholar 

  • Ferziger, J. H., Peric, M.: 1997, Computational Methods for Fluid Dynamics, Springer-Verlag, Berlin.

    Google Scholar 

  • Finnigan, J. J.: 2004, “A re-evaluation of long-term flux measurement techniques. Part II: coordinate systems”, Bound.-Layer Meteorol. in review.

    Google Scholar 

  • Finnigan, J. J., Clements, R., Malhi, Y., Leuning, R., Cleugh, H.: 2003, “A re-evaluation of long-term flux measurement techniques. Part I: averaging and coordinate rotation”, Bound.-Layer Meteorol. 107, 1–48.

    Article  Google Scholar 

  • Finnigan, J. J.: 1990, “Streamline coordinates, moving frames, chaos and integrability in fluid flow”, Topological Fluid Mechanics, Proc. IUTAM Symp. Topological Fluid Mechanics, Eds Moffat, H. K., Tsinober A., Cambridge University Press, Cambridge, 64–74.

    Google Scholar 

  • Finnigan, J. J.: 1983, “A streamline coordinate system for distorted two-dimensional shear flows”, J. Fluid Mech. 130, 241–258.

    Google Scholar 

  • Finnigan, J. J., Bradley, E. F.: 1983, “The turbulent kinetic energy budget behind a porous barrier: an analysis in streamline coordinates”, J. Wind Eng. Ind. Aerodyn. 15, 157–168.

    Article  Google Scholar 

  • Geissbuhler, P., Siegwolf, R., Eugster, W.: 2000, “Eddy covariance measurements on mountain slopes: the advantage of surface-normal sensor orientation over a vertical set-up”, Bound.-Layer Meteorol. 96, 371–392.

    Google Scholar 

  • Goulden, M.L., Munger, J.W., Fan, S.-M., Daube, B.C., Wofsy, S.C.: 1996, “Measurements of carbon sequestration by long-term eddy covariance methods and a critical evaluation of accuracy”, Global Change Biology 2, 169–183.

    Google Scholar 

  • Howarth, L.: 1951, “The boundary-layer in three dimensional flow. Part I: derivation of the equations for flow along a general curved surface”, Phil. Mag. 42, 239–243.

    Google Scholar 

  • Irvine, M. R., Gardiner, B. A., Hill, M. K.: 1997, “The evolution of turbulence across a forest edge”, Bound.-Layer Meteorol. 94, 467–497.

    Google Scholar 

  • Kaimal, J.C., Finnigan, J.J.: 1994, Atmospheric Boundary Layer Flows: Their Structure and Measurement, Oxford University Press, New York.

    Google Scholar 

  • Kaimal, J. C., Gaynor, J. E., Zimmerman, H. A., Zimmerman, G. A.: 1990, “Minimizing flow distortion errors in a sonic anemometer”, Bound.-Layer Meteorol. 53, 103–115.

    Article  Google Scholar 

  • Kaimal, J. C., Haugen, D. A.: 1969, “Some errors in the measurement of Reynolds stress”, J. Appl. Meteorol. 8, 460–462.

    Article  Google Scholar 

  • Lee, X.: 2004, “Forest-atmosphere exchanges in non-ideal conditions: the role of horizontal eddy flux and its divergence” Forest at the Land-Atmosphere Interface (Mencuccini, M. et al. Eds), CAB International, pp 145–157.

    Google Scholar 

  • Lee, X., Hu, X.: 2002, “Forest-air fluxes of carbon and energy over non-flat terrain”, Bound.-Layer Meteorol. 103, 277–301.

    Article  Google Scholar 

  • Lee, X.: 1998, “On micrometeorological observations of surface-air exchange over tall vegetation”, Agric. Forest Meteorol. 91, 39–49.

    Article  Google Scholar 

  • Li, Z., Lin, J. D., Miller, D. R.: 1990, “Air flow over and through a forest edge: a steady state numerical simulation”, Bound.-Layer Meteorol. 51, 179–197.

    Article  Google Scholar 

  • Liu, H. P, Peters, G., Foken, T.: 2001, “New equations for sonic temperature variance and buoyancy heat flux with an omnidirectional sonic anemometer”, Bound.-Layer Meteorol. 100, 459–468.

    Article  Google Scholar 

  • Massman, W. J., Lee, X.: 2002, “Eddy covariance flux corrections and uncertainties in long-term studies of carbon and energy exchanges”, Agric. Forest Meteorol. 113, 121–144.

    Article  Google Scholar 

  • McMillen, R. T.: 1988, “An eddy correlation technique with extended applicability to non-simple terrain”, Bound.-Layer Meteorol. 43, 231–245.

    Article  Google Scholar 

  • Paw U, K. T., Baldocchi, D., Meyers, T. P., Wilson, K. B.: 2000, “Correction of eddy-covariance measurements incorporating both advective effects and density fluxes”, Bound.-Layer Meteorol. 97, 487–511.

    Google Scholar 

  • Paw U, K. T., Falk, M., Suchanic, T. H., Ustin, S. L., Chen, J., Park, Y.-S., Winner, W. E., Thomas, S. C., Hsiao, T. C., Shaw, R. H., King, T. S., Pyles, R. D., Schroeder, M., Matista, A. A.: 2004, “Carbon dioxide exchange between an old growth forest and the atmosphere”, Ecosystems, in press.

    Google Scholar 

  • Pielke, R. A.: 1984, Mesoscale Meteorological Modeling, Academic Press, New York.

    Google Scholar 

  • Raupach, M. R.: 2001 “Inferring Biogeochemical sources and sinks from atmospheric concentrations: general considerations and applications in vegetation canopies”, In Shulze, E-D., Heimann, M., Harrison, S., Holland, E., Lloyd, J., Prentice, I. C., Schimel, D. (Eds) Global Biogeochemical Cycles in the Climate System, Academic Press, 41–59.

    Google Scholar 

  • Sakai, R. K., Fitzjarrald, D. R., Moore, K. E.: 2001, “Importance of low-frequency contributions to eddy fluxes observed over rough surfaces”, J. Appl. Meteorol. 40, 2178–2192.

    Article  Google Scholar 

  • Tanner, C. B., Thurtell, G. W.: 1969, “Anemoclinometer measurements of Reynolds stress and heat transport in the atmospheric surface layer”, Research and Development Tech. Report ECOM 66-G22-F to the US Army Electronics Command, Dept. Soil Science, Univ. of Wisconsin, Madison, WI.

    Google Scholar 

  • Wilczak, J. M., Oncley, S. P., Sage, S. A.: 2001, “Sonic anemometer tilt correction algorithms”, Bound.-Layer Meteorol. 99, 127–150.

    Article  Google Scholar 

  • Zeman, O., Jensen, N. O.: 1987, “Modification of turbulence characteristics in flow over hills’”, Quart. J. Roy Meteorol. Soc. 113, 55–80.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Lee, X., Finnigan, J., Paw U, K.T. (2004). Coordinate Systems and Flux Bias Error. In: Lee, X., Massman, W., Law, B. (eds) Handbook of Micrometeorology. Atmospheric and Oceanographic Sciences Library, vol 29. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2265-4_3

Download citation

Publish with us

Policies and ethics