Advertisement

Ventilated Supercavities

Chapter
  • 2.9k Downloads
Part of the Fluid Mechanics and Its Applications book series (FMIA, volume 76)

Keywords

FROUDE Number Cavity Length Gravitational Effect Tube Vortex Cavity Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Buyvol V.N. —1980— Slender cavities in flows with perturbations (in Russian). Nauvoka Dunka Ed., Kiev (Ukraine).Google Scholar
  2. Campbell I.J. & Hilborne D.V. —1958— Air entrainment behind artificially inflated cavities. Proc. 2ndInt. Symp. on Naval Hydrodynamics, Washington DC (USA).Google Scholar
  3. Chanson H. —1999— The hydraulics of open channel flow — An introduction. Butterworth-Heineman Publishers, Oxford (England), 544 p.Google Scholar
  4. Cox R.N. & Clayden W.A. —1957— Air entrainment at the rear of a steady cavity. Symp. on Cavitation in Hydrodynamics. NPL, Teddington (England).Google Scholar
  5. Epshtein L.A. —1970— Theoretical methods of similarity in problems of ship hydromechanics. Sudostroenie Publishing House, Leningrad (Russia).Google Scholar
  6. Epshtein L.A. —1971— Characteristics of ventilated cavities and some scale effects. Proc. IUTAM Symp. on Rapid Non-Steady Liquid Flows, Leningrad, 173–185.Google Scholar
  7. Logvinovich G.V. —1973— Hydrodynamics of flows with free boundaries. Halsted Press, 215 p.Google Scholar
  8. Logvinovich G.V. —1976— Problems of the theory of axixymmetrical cavities. Tsagi1797.Google Scholar
  9. Laali A.R. & Michel J.M. —1984— Air entrainment in ventilated cavities: case of the fully developed “half-cavity”. J. Fluids Eng.106(3), 327–335.Google Scholar
  10. Michel J.M. —1971— Ventilated cavities: a contribution to the study of pulsation mechanism. Proc. IUTAM Symp. on Rapid Non-Steady Liquid Flows, Leningrad (Russia), 343–360.Google Scholar
  11. Michel J.M. —1984— Some features of water flows with ventilated cavities. J. Fluids Eng.106(3), 319–326.Google Scholar
  12. Parishev E.V. —1978— Systems of non-linear differential equations with time-lag for the description of non-steady axisymmetric cavities. Tsagi1907, 1–17.Google Scholar
  13. Parishev E.V. —1978— Theoretical study of the stability and pulsations of axisymmetric cavities. Tsagi1907, 17–40.Google Scholar
  14. Rowe A. —1979— Evaluation of a three-speed hydrofoil with wetted upper side. J. Ship Res.23(1), 55–65.Google Scholar
  15. Savchenko Y.N. —2001— Experimental investigation of supercavitating motion of bodies. VKI/RTO Special Course on Supercavitation. Von Karman Institute for Fluid Dynamics, Brussels (Belgium).Google Scholar
  16. Semenenko V.N. —1998— Instability and oscillation of gas-filled supercavities. Proc. 3rdInt. Symp. on Cavitation, vol. 2, Grenoble (France), 25–30.Google Scholar
  17. Semenenko V.N. —2001— Artificial supercavitation. Physics and calculation. VKI/RTO Special Course on Supercavitation. Von Karman Institute for Fluid Dynamics, Brussels (Belgium).Google Scholar
  18. Semenov Y.A. —1998— Exact solution of problem of unsteady cavitation flow past wedge. Proc. 3rdInt. Symp. on Cavitation, vol. 2, Grenoble (France), 55–59.Google Scholar
  19. Serebryakov V. —1973— Asymptotic solution of the problem of slender axisymmetric cavity. Rpt NAS of Ukrainia A12, 1119–1122.Google Scholar
  20. Silberman E. & Song C.S. —1961— Instability of ventilated cavities. J. Ship Res.5(1), 13–33.Google Scholar
  21. Song C.S. —1962— Pulsation of ventilated cavities. J. Ship Res.5(4), 1–20.Google Scholar
  22. Vasin A.D. —2001— The principle of independency of the cavity sections expansion as the basis for investigations on cavitation flows. VKI/RTO Special Course on Supercavitation. Von Karman Institute for Fluid Dynamics, Brussels (Belgium).Google Scholar
  23. Verron J. —1977— Écoulements cavitants autour ďailes ďenvergure finie en présence ďune surface libre. J. Méc.12(4), 745–774.MathSciNetGoogle Scholar
  24. Verron J. & Michel J.M. —1984— Base-vented hydrofoils of finite span under a free surface: an experimental investigation. J. Ship Res.28(2), 90–106.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Personalised recommendations