Partial Cavities

Part of the Fluid Mechanics and Its Applications book series (FMIA, volume 76)


Cavity Length Adverse Pressure Gradient Cavitation Erosion Cavitation Number Cavitation Inception 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brennen C.E. & Acosta A.J. —1973— Theoretical quasi-static analyses of cavitation compliance in turbopumps. J. Spacecraft and Rockets10(3), 175–180.ADSCrossRefGoogle Scholar
  2. Callenaere M. —1999— Étude physique des poches de cavitation partielle en écoulement interne. Thesis, Grenoble University (France).Google Scholar
  3. Callenaere M., Franc J.P. & Michel J.M. —2001— The cavitation instability induced by the development of a re-entrant jet. J. Fluid Mech.444, 223–256.CrossRefADSzbMATHGoogle Scholar
  4. De M.K. & Hammitt F.G. —1982— New method for monitoring and correlating cavitation noise to erosion capability. J. Fluids Eng.104, 434–442.CrossRefGoogle Scholar
  5. De Lange D.F. —1996— Observation and modelling of cloud formation behind a sheet cavity. PhD Thesis, Twente University (the Netherlands).Google Scholar
  6. De Lange D.F. & De Bruin G.J. —1998— Sheet cavitation and cloud cavitation, re-entrant jet and three-dimensionality. Appl. Sci. Res.58, 91–114.CrossRefGoogle Scholar
  7. Driver D.M. & Seegmiller H.L. —1985— Features of a reattaching turbulent shear layer in divergent channel flow. AIAA Journal23(2), 163–171.ADSCrossRefGoogle Scholar
  8. Duttweiler M.E. —2001— Surge instability on a cavitating propeller. PhD Thesis, Cal. Inst. Techn., Pasadena (USA).Google Scholar
  9. Duttweiler M.E. & Brennen C.E. —1998— Partial cavity instabilities. Proc. US-Japan Seminar: Abnormal Flow Phenomen in Turbomachines, Osaka (Japan).Google Scholar
  10. Duttweiler M.E. & Brennen C.E. —2002— Surge instability on a cavitating propeller. J. Fluid Mech.458, 133–152.CrossRefADSzbMATHGoogle Scholar
  11. Fruman D.H., Benmansour I. & Sery R. —1991a— Estimation of the thermal effects on cavitation of cryogenic liquids. Proc. ASME Cavitation and Multiphase Flow Forum, Portland (USA).Google Scholar
  12. Fruman D.H. & Beuzelin F. —1991b— Effets thermiques dans la cavitation des fluides cryogéniques. La Houille Blanche7/8, 557–561.Google Scholar
  13. Fry S.A. —1989— The damage capacity of cavitating flow from pulse height analysis. J. Fluids Eng.111, 502–509.CrossRefGoogle Scholar
  14. Furness R.A. & Hutton S.P. —1975— Experimental and theoretical studies of two-dimensional fixed-type cavities. J. Fluids Eng.97, 515–522.CrossRefGoogle Scholar
  15. Holl J.W., Billet M.L. & Weir D.S. —1975— Thermodynamics effects on developed cavitation. J. Fluids Eng.97, 507–514.CrossRefGoogle Scholar
  16. Holman J.P. —1997— Heat transfer. McGraw-Hill Book Company Ed.Google Scholar
  17. Hord J. —1973— Cavitation in liquids cryogens — II. Hydrofoil. NASA CR-2156, 157 p.Google Scholar
  18. Ito J. —1986— Calculation of partially cavitating thick hydrofoil and examination of a flow model at cavity termination. Proc. Int. Symp. on Cavitation, Sendai (Japan).Google Scholar
  19. Iwai Y., Okada T., Nashiya N. & Fukuda Y. —1991— Formation and progression of vibratory cavitation erosion. Proc. 1stJoint ASME/JSME Fluids Eng. Conf., Portland (USA), June 23–27.Google Scholar
  20. Kamono H., Kato H., Yamaguchi H. & Miyanaga M. —1993— Simulation of cavity flow by ventilated cavitation on a foil section. ASME Cavitation and Multiphase Flow Forum, FED 153, 183–189.Google Scholar
  21. Kato H. —1984— Thermodynamic effect on incipient and developed sheet cavitation. Proc. Int. Symp. on Cavitation Inception, New Orleans (USA).Google Scholar
  22. Kato H., Ye Y.P. & Maeda M. —1989— Cavitation erosion and noise study on a foil section. Proc. ASME Int. Symp. on Cavitation in Hydraulic Structures and Turbomachinery, Albuquerque (USA).Google Scholar
  23. Kawanami Y., Kato H., Yamaguchi H., Tagaya Y. & Tanimura M. —1997— Mechanism and control of cloud cavitation. J. Fluids Eng.119, 788–795.CrossRefGoogle Scholar
  24. Kawanami Y., Kato H. & Yamaguchi H. —1998— Three-dimensional characteristics of the cavities formed on a two-dimensional hydrofoil. Proc. 3rdInt. Symp. on Cavitation, vol. 1, Grenoble (France), 191–196.Google Scholar
  25. Kinnas S.A. —1998— The prediction of unsteady sheet cavitation. Proc. 3rdInt. Symp. on Cavitation, vol. 1, Grenoble (France), 19–36.Google Scholar
  26. Kubota S., Kato H., Yamaguchi H. & Maeda M. —1987— Unsteady structure measurement of cloud cavitation on a foil section using conditional sampling technique. Proc. Int. Symp. on Cavitation Research Facilities and Techniques, Boston (USA), 161–168.Google Scholar
  27. Kubota S., Kato H., Yamaguchi H. —1992— A new modelling of cavitating flows: a numerical study of unsteady cavitation on a hydrofoil section. J. Fluid Mech.240, 59–96.ADSCrossRefGoogle Scholar
  28. Laberteaux K.R. & Ceccio S.L. —2001— Partial cavity flows. Part 1 — Cavities forming on models without spanwise variation. Part 2 — Cavities forming on test objects with spanwise variation. J Fluid Mech.431, 1–41 and 43–63.ADSzbMATHCrossRefGoogle Scholar
  29. Le Q., Franc J.P. & Michel J.M. —1993a— Partial cavities: global behaviour and mean pressure distribution. J. Fluids Eng.115, 243–248.CrossRefGoogle Scholar
  30. Le Q., Franc J.P. & Michel J.M. —1993b— Partial cavities: pressure pulse distribution around cavity closure. J. Fluids Eng.115, 249–254.CrossRefGoogle Scholar
  31. Lemonnier H. & Rowe A. —1988— Another approach in modelling cavitating flows. J. Fluid Mech.195, 557–580.ADSCrossRefGoogle Scholar
  32. Maeda M., Yamaguchi H. & Kato H. —1991— Laser holography measurement of bubble population in cavitation cloud on a foil section. Proc. 1st Joint ASME/JSME Fluids Eng. Conf., FED 116, Portland (USA), 67–75.Google Scholar
  33. Michel J.M. —1978— Demi-cavité formée entre une paroi solide et un jet plan de liquide quasi parallèle: approche théorique. DRME Contract77/352, Rpt 4.Google Scholar
  34. Moore R.D. & Ruggeri R.S. —1968— Prediction of thermodynamic effects of developed cavitation. NASA, Rpt TN D-4899, Washington DC (USA).Google Scholar
  35. Nishiyama T. & Ito J. —1977— Calculation of partially cavitating flow by singularity method. Trans. JSME43(370), 2165–2174.Google Scholar
  36. Po W.Y. & Ceccio S.L. —1997— Diffusion induced bubble populations downstream of a partial cavity. J. Fluids Eng.119, 782–787.CrossRefGoogle Scholar
  37. Reboud J.L. & Delannoy Y. —1994— Two-phase flow modelling of unsteady cavitation. Proc. 2ndInt. Symp. on Cavitation, Tokyo (Japan), 34–44.Google Scholar
  38. Reisman G.E., Wang Y.C. & Brennen C.E. —1998— Observations of shock waves in cloud cavitation. J. Fluid Mech.355, 255–283.CrossRefADSzbMATHGoogle Scholar
  39. Rowe A. & Blottiaux O. —1993— Aspects of modelling partially cavitating hydrofoils. J. Ship Res.37(1), 34–48.Google Scholar
  40. Sebestyen G. & Varga J.J. —1972— Determination of cavitation hydrodynamic intensity by noise measurements. Proc. 2ndJSME Int. Symp. on Fluid Machinery and Fluidics, Tokyo (Japan).Google Scholar
  41. Stutz B. & Reboud J.L. —1997a— Two-phase flow structure of sheet cavitation. Phys. Fluids9(12), 3678–3686.CrossRefADSMathSciNetzbMATHGoogle Scholar
  42. Stutz B. & Reboud J.L. —1997b— Experiments on unsteady cavitation. Exp. Fluids22, 191–198.CrossRefGoogle Scholar
  43. Watanabe S., Tsujimoto Y., Franc J.P. & Michel J.M. —1998— Linear analyses of cavitation instabilities. Proc. 3rdInt. Symp. on Cavitation, vol. 1, 347–352, J.M. Michel and H. KatoEd.Google Scholar
  44. Yamaguchi H. & Kato H. —1983— Non-linear theory for partially cavitating hydrofoils. Trans. JSNA152, 117–124.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Personalised recommendations