Advertisement

Supercavitation

Chapter
  • 2.9k Downloads
Part of the Fluid Mechanics and Its Applications book series (FMIA, volume 76)

Keywords

Stagnation Point Lift Coefficient Cavity Flow Cavity Pressure Cavity Closure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acosta A.J. & Furuya O. —1979— A brief note on linearized, unsteady supercavitating flows. J. Ship Res.2, 85–88.Google Scholar
  2. Arakeri V.H. —1975— Viscous effects on the position of cavitation separation from smooth bodies. J. Fluid Mech.68, 779–799.ADSCrossRefGoogle Scholar
  3. Armstrong A.H. —1953— Abrupt and smooth separation in plane and axisymmetric flow. Memo. Arm. Res. Est., G.B., nº 22–63.Google Scholar
  4. Benjamin T.B. —1964— Note on the interpretation of two-dimensional theories of growing cavities. J. Fluid Mech.19(1), 137–144.ADSzbMATHMathSciNetCrossRefGoogle Scholar
  5. Birkhoff G., Plesset M.S. & Simmons N. —1950— Wall effects in cavity flows I. Quart. Appl. Math.8, 161 sq.Google Scholar
  6. Birkhoff G., Plesset M.S. & Simmons N. —1952— Wall effects in cavity flows II. Quart. Appl. Math.9, 413 sq.Google Scholar
  7. Birkhoff G. & Zarantonello E.H. —1957— Jets, wakes, and cavities. Academic Press Inc.Google Scholar
  8. Brennen C.E. —1969— A numerical solution of axisymmetric cavity flows. J. Fluid Mech.37(4), 671–688.ADSzbMATHCrossRefGoogle Scholar
  9. Cohen H. & Di Prima R.C. —1958— Wall effects in cavitating flows. Proc. 2ndONR Symp. on Naval Hydrodynamics.Google Scholar
  10. Cumberbatch E. —1961— Accelerating, supercavitating flow past a thin two-dimensional wedge. J. Ship Res.1(8), 1–8.Google Scholar
  11. Efros D. —1946— Hydrodynamical theory of two-dimensional flow with cavitation. CR Acad. Sci., vol. LI, nº 4, URSS, 267–270.MathSciNetGoogle Scholar
  12. Fabula A.G. —1964— Choked flow about vented or cavitating hydrofoil. Trans. ASME D86, 561 sq.Google Scholar
  13. Franc J.P. & Michel J.M. —1985— Attached cavitation and the boundary layer: experimental investigation and numerical treatment. J. Fluid Mech.154, 63–90.ADSCrossRefGoogle Scholar
  14. Franc J.P. & Michel J.M. —1988— Unsteady attached cavitation on an oscillating hydrofoil. J. Fluid Mech.193, 171–189.ADSCrossRefGoogle Scholar
  15. Garabedian P.R. —1956— Calculation of axially symmetric cavities and jets. Pac. J. Math.6, 611–684.zbMATHMathSciNetGoogle Scholar
  16. Geurst J.A. —1960— Some investigations of a linearized theory for unsteady cavity flows. Arch. Rat. Mech. Anal.5(4), 316–346.MathSciNetGoogle Scholar
  17. Gilbard D. & Serrin J. —1950— Free boundaries and jets in the theory of cavitation. J. Math. Phys.29, 1–12.Google Scholar
  18. Von Karman T. —1949— Accelerated flow of an incompressible fluid with wake formation. Ann. Mathem. Pura Applic.IV(29), 247–249.zbMATHCrossRefGoogle Scholar
  19. Kinnas S.A. —1998— The prediction of unsteady sheet cavitation. Proc. 3rdInt. Symp. on Cavitation, vol. 1, Grenoble (France), 19–36.Google Scholar
  20. Knapp R.T., Dailly J.W. & Hammitt F.G. —1970— Cavitation. McGraw-Hill Book Company Ed.Google Scholar
  21. Lemonnier H. & Rowe A. —1988— Another approach in modeling cavitating flows. J. Fluid Mech., vol. 195, 557–580.ADSCrossRefGoogle Scholar
  22. Logvinovich G.V. —1969— Hydrodynamics of free surface flows (in Russian). Nauvoka Dunka Ed., Kiev (Ukraine).Google Scholar
  23. Logvinovich G.V. & Serebryakov V.V. —1975— The methods for the calculation of the shape of slender axisymmetric cavities (in Russian). Hydromechanics, Nauvoka Dunka Ed., Kiev (Ukraine).Google Scholar
  24. Meijer M.C. —1967— Pressure measurements on flapped hydrofoils in cavity flows and wake flows. J. Ship Res.11, 170 sq.Google Scholar
  25. Michel J.M. —1973— Sillages plans supercavitants: étude physique. Thesis, Grenoble University (France).Google Scholar
  26. Michel J.M. & Rowe A. —1974— Profils minces supercavitants à arrière tronqué. Définition et étude théorique de profils portants à nombre de ventilation nul en présence ďune surface libre. La Houille Blanche217(3), 205–214.CrossRefGoogle Scholar
  27. Michel J.M. —1977— Wakes of developed cavitities. J. Ship Res.21(4), 225–238.Google Scholar
  28. Milne-Thomson L.M. —1960— Theoretical hydrodynamics. Macmillan Ed., London (England).zbMATHGoogle Scholar
  29. Riabouchinsky D. —1920— On steady fluid motion with free surface. Proc. Math. Soc. London19, 206–215.zbMATHCrossRefGoogle Scholar
  30. Rowe A. —1974— Profils minces supercavitants à arrière tronqué. Influence de la ventilation sur les caractéristiques de profils portants évoluant au voisinage ďune surface libre. La Houille Blanche217(3), 215–230.Google Scholar
  31. Rowe A. & Michel J.M. —1975— Two-dimensional base-vented hydrofoils near a free surface: influence of the ventilation number. J. Fluids Eng.97, 465–474.CrossRefGoogle Scholar
  32. Scardovelli R. & Zaleski S. —1999— Direct numerical simulation of free-surface and interfacial flow. Ann. Rev. Fluid Mech.31, 567–603.ADSMathSciNetCrossRefGoogle Scholar
  33. Semenenko V.N. —2001— Artificial supercavitation. Physics and calculation. VKI/RTO Special Course on Supercavitation. Von Karman Institute for Fluid Dynamics, Brussels (Belgium).Google Scholar
  34. Serebryakov V.V. —1972— The annular model for calculation of axisymmetric cavity flows. Hydromechanics, Nauvoka Dunka Ed., Kiev (in Russian), 27, 25–29.Google Scholar
  35. Serebryakov V.V. —1998— Asymptotic approach for problems of axisymmetric supercavitation based on the slender body approximation. Proc. 3rd Int. Symp. on Cavitation, vol. 2, Grenoble (France), 61–70.Google Scholar
  36. Timmam R. —1958— A general linearized theory for cavitating hydrofoils in non-steady flow. Proc. 2ndInt. Symp. on Naval Hydrodynamics, 559–579.Google Scholar
  37. Tsen L.F. & Guilbaud M. —1971— Calcul et essais des ailes supercavitantes finies en mouvement harmonique. Proc. IUTAM Symp. on Non-Steady Flow of Water at High Speeds, Leningrad (Russia), 427–447.Google Scholar
  38. Tulin M.P. —1964— Supercavitating flows. Small perturbation theory. J. Ship Res.8, 16–37.MathSciNetGoogle Scholar
  39. Tulin M.P. —1953— Steady two-dimensional cavity flows about slender bodies. DTMB Rpt 834.Google Scholar
  40. Tulin M.P. & Hsu C.C. —1980— New applications of cavity flow theory. Proc. 13th Int. Symp. on Naval Hydrodynamics, Tokyo (Japan), 107–132.Google Scholar
  41. Vasin A. —1998— Supercavities in compressible fluid. Proc. 3rd Int. Symp. on Cavitation, vol. 2, Grenoble (France) 3–8.Google Scholar
  42. Vasin A. —2001— The principle of independence of the cavity sections expansion as the basis for investigation on cavitation flows. VKI/RTO Special Course on Supercavitation. Von Karman Institute for Fluid Dynamics, Brussels (Belgium).Google Scholar
  43. Villat H. —1911— Sur la résistance des fluides. Annales de ľEcole Normale Supérieure, 203 sq.Google Scholar
  44. Wang D.P. & Wu T.Y.T. —1963— Small—time behavior of unsteady cavity flows. Arch. Rat. Mech. Anal.14(2), 127–152.zbMATHGoogle Scholar
  45. Wang D.P. & Wu T.Y.T. —1965— General formulation of a perturbation theory for unsteady cavity flows. Appl. Mech. Fluid Eng. Conf., June 1965.Google Scholar
  46. Woods L.C. —1955— Unsteady plane flow past curved obstacles with infinite wakes. Proc. Roy. Soc. A229, 152–180.ADSzbMATHMathSciNetCrossRefGoogle Scholar
  47. Woods L.C. —1964— On the theory of growing cavities behind hydrofoils. J. Fluid Mech.19(1), 124–136.ADSzbMATHMathSciNetCrossRefGoogle Scholar
  48. Woods L.C. —1966— On the instability of ventilated cavities. J. Fluid Mech.26(3), 437–457.ADSzbMATHMathSciNetCrossRefGoogle Scholar
  49. Wu T.Y.T. —1956— A free streamline theory for two-dimensional fully cavitated hydrofoils. J. Math. Phys.35, 236–265.zbMATHMathSciNetGoogle Scholar
  50. Wu T.Y.T. —1958— Unsteady supercavitating flows. Proc. 2ndInt. Symp. on Naval Hydrodynamics, 293–313.Google Scholar
  51. Wu T.Y.T., Whitney A.K. & Brennen C. —1971— Wall effects in cavity flows and their correction rules. Proc. IUTAM Symp. on Non-Steady Flow of Water at High Speeds, Leningrad (Russia), 461–470.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Personalised recommendations