The Dynamics of Spherical Bubbles

Part of the Fluid Mechanics and Its Applications book series (FMIA, volume 76)


Critical Pressure Interface Velocity Characteristic Time Scale Bubble Radius Bubble Collapse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Besant W. —1859— Hydrostatics and Hydrodynamics. Cambridge University Press.Google Scholar
  2. Birkhoff G. —1955— Stability of spherical bubbles. Quart. Applied Math.13, 451 sq.Google Scholar
  3. Borotnikova M.I. & Soloukin R.I. —1964— Sov. Phys. Acoust.10, 28–32.Google Scholar
  4. Cole R.H. —1948— Underwater explosions. Princeton University Press.Google Scholar
  5. Crighton D.G. & Ffowcs Williams J.E. —1969— Sound generation by turbulent two-phase flow. J. Fluid Mech.36, part 3, 585–603.ADSzbMATHCrossRefGoogle Scholar
  6. Franc J.P., Avellan F., Belahadji B., Billard J.Y., Briançon-Marjollet L., Fréchou D., Fruman D.H., Karimi A., Kueny J.L. & Michel J.M. —1995— La cavitation. Mécanismes physiques et aspects industriels. Presses Universitaires de Grenoble — Collection Grenoble Sciences, 580 p.Google Scholar
  7. Hsieh D.Y. —1965— Some analytical aspects of bubble dynamics. J. Basic Eng.87, 991–1005.Google Scholar
  8. Jomni F. —1997— Étude des phénomènes hydrodynamiques engendrés dans les liquides diélectriques par un champ électrique très intense. Thesis, Grenoble University (France).Google Scholar
  9. Jomni F., Aitken F. & Denat A. —1999— Dynamics of microscopic bubbles generated by a corona discharge in insulating liquids: influence of pressure. J. Electrostatics47, 49–59.CrossRefGoogle Scholar
  10. Keller J.B. & Miksis M. —1980— Bubble oscillations of large amplitude. J. Acoust. Soc. Am.68, 628–623.CrossRefADSzbMATHGoogle Scholar
  11. Parlitz U., English V., Scheffczyk C. & Lauterborn W. —1990— Bifurcation structure of bubble oscillators. J. Acoust. Soc. Am.88, 2 sq.Google Scholar
  12. Plesset M.S. —1954— On the stability of fluid flows with spherical symmetry. J. Appl. Phys.25, 96–98.ADSzbMATHMathSciNetCrossRefGoogle Scholar
  13. Plesset M.S. & Mitchell T.P. —1955— On the stability of the spherical shape of a vapor cavity in a liquid. Quart. Appl. Math.13, 419–430.MathSciNetGoogle Scholar
  14. Plesset M.S. & Prosperetti A. —1977— Bubble dynamics and cavitation. Ann. Rev. Fluid Mech.9, 145–164.CrossRefADSGoogle Scholar
  15. Poritsky H. —1952— The collapse or growth of a spherical bubble or cavity in a viscous fluid. Proc. 1stUS Nat. Congress of Appl. Mech, 813 sq.Google Scholar
  16. Rayleigh (Lord) —1917— The pressure developed in a liquid during the collapse of a spherical cavity. Phil. Mag.34, 94 sq.Google Scholar
  17. Shima A. & Fujiwara T. —1980— The collapse of bubbles in compressible hydraulic oils. J. Acoust. Soc. Am.68(5) 1509–1515.CrossRefADSzbMATHGoogle Scholar
  18. Shu S.S. —1952— Note on the collapse of a spherical cavity in a viscous incompressible fluid. Proc. of the 1stUS Nat. Congress of Appl. Mech.Google Scholar
  19. Smereka P., Birenir B. & Banerjee S. —1987— Regular and chaotic bubble oscillations in periodically driven pressure fields. Phys. Fluids30, 11 sq.Google Scholar
  20. Zababakhin E.I. —1960— The collapse of bubbles in a viscous liquid. PMM24(6) 1129–1131.zbMATHGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Personalised recommendations