Advertisement

Nuclei and Cavitation

Chapter
  • 3k Downloads
Part of the Fluid Mechanics and Its Applications book series (FMIA, volume 76)

Keywords

Critical Pressure Thermal Boundary Layer Bubble Cavitation Diffusive Equilibrium Cumulative Histogram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achard J.L. & Canot E. —1992— Bubble evolution in liquid-gas solutions, viewed as an elementary catastrophe. Instabilities in Multiphase Flows. Plenum Press Ed., 37–51.Google Scholar
  2. Aitken F., Mc Cluskey F. & Denat A. —1996— An energy model for artificially generated bubbles in liquids. J. Fluid Mech.327, 373–392.ADSzbMATHCrossRefGoogle Scholar
  3. Berthelot M. —1850— Sur quelques phénomènes de dilatation forcée de liquides. Ann. Chim. Phys.30(3), 232–237.Google Scholar
  4. Blake F.G. —1949— The onset of cavitation in liquids. Harvard Acoustics Res. Lab. TM 9.Google Scholar
  5. Briançon-Marjollet L., Franc J.P. & Michel J.M. —1990— Transient bubbles interacting with an attached cavity and the boundary layer. J. Fluid Mech.218, 355–376.ADSCrossRefGoogle Scholar
  6. Briggs L.J. —1950— Limiting negative pressure of water. J. Appl. Phys.21, July, 721–722.CrossRefADSGoogle Scholar
  7. Cha Y.S. —1981— On the equilibrium of cavitation nuclei in liquid-gas solution. ASME J. Fluids Eng.103, 425 sq.Google Scholar
  8. Crighton D.G. & Ffowcs Williams J.E. —1969— Sound generation by turbulent two-phase flow. J. Fluid Mech.36, part 3, 585–603.ADSzbMATHCrossRefGoogle Scholar
  9. Donny F.M.L. —1846— Ann. Chim. Phys.16(3), 167–190.Google Scholar
  10. Epstein P.S. & Plesset M.S. —1950— On the stability of gas bubbles in liquid-gas solutions. J. Chem. Phys.18, 1505–1509.CrossRefADSGoogle Scholar
  11. Fox F.E. & Herfeld K.F. —1954— Gas bubbles with organic skin as cavitation nuclei. J. Acoust. Soc. Am.26, 984–989.ADSCrossRefGoogle Scholar
  12. Haberman W.L. & Morton R.K. —1953— An experimental investigation of the drag and shape of air bubbles rising in various liquids. DTMB, Rpt 802, September.Google Scholar
  13. Harvey E.N., Mc Elryy W.D. & Whiteley A.H. —1947— On cavity formation in water. J. Appl. Phys.18, 162–172.CrossRefADSGoogle Scholar
  14. Jomni F., Aitken F. & Denat A. —1999— Dynamics of microscopic bubbles generated by a corona discharge in insulating liquids: influence of pressure. J. Electrostatics47, 49–59.CrossRefGoogle Scholar
  15. Knapp R.T., Daily J.W. & Hammitt F.G. —1970— Cavitation. McGraw-Hill Book Company Ed.Google Scholar
  16. Medwin H. —1977a— Acoustical determination of bubble-size spectra. J. Acoust. Soc. Am.62(4), 1041–1044.CrossRefADSGoogle Scholar
  17. Medwin H. —1977b— Counting bubbles acoustically: a review. Ultrasonics15(1), 7–13.CrossRefGoogle Scholar
  18. Mori Y., Hijikata K. & nagatani T. —1977— Fundamental study of bubble dissolution in liquid. Int. J. Heat Mass Transfer20, 41 sq.Google Scholar
  19. Oldenziel D.M. —1982— New instruments in cavitation research: the cavitation susceptibility meter. J. Fluids Eng.104(2), 136–142.CrossRefGoogle Scholar
  20. Parkin B.R. & Kermeen R.W. —1962— The roles of convective air diffusion and liquid tensiles during cavitation inception. Proc. IAHR Symp. on Cavitation and Hydraulic Machinery, Sendai (Japan), September.Google Scholar
  21. Pham T.M., Michel J.M. & Lecoffre Y. —1997— Dynamical nuclei measurement: on the design and performance evaluation of an optimized center-body meter. J. Fluids Eng.119(4), 744–751.CrossRefGoogle Scholar
  22. Plesset M.S. —1957— Physical effects in cavitation and boiling. Proc. 1stInt. Symp. on Naval Hydrodynamics, Washington DC (USA), 297–323.Google Scholar
  23. Plesset M.S. & Hsieh D.H. —1960— Theory of gas bubble dynamics in oscillating pressure fields. Phys. Fluids3, 882–892.CrossRefMathSciNetADSGoogle Scholar
  24. Rees E.P. & Trevena D.H. —1966— Cavitation thresholds in liquids under static conditions. ASME Cavitation Forum, 12 sq.Google Scholar
  25. Reynolds O. —1882— On the internal cohesion of liquids and the suspension of a column of mercury to a height of more than double that of a barometer. Mem. Manchester Lit. Phil. Soc.7, 1–19.Google Scholar
  26. Temperley H.N.V. —1946— The behavior of water under hydrostatic tension. Proc. Phys. Soc. London58, 436–443.ADSCrossRefGoogle Scholar
  27. Tsai J.F. & Chen Y.N. —1990— A generalized approach on equilibrium theory of cavitation nuclei in liquid-gas solutions. J. Fluids Eng.112, 487–491.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Personalised recommendations