Cavitation Erosion

Part of the Fluid Mechanics and Its Applications book series (FMIA, volume 76)


Pressure Pulse Solid Wall Mass Loss Rate Acoustic Impedance Adverse Pressure Gradient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alloncle A.P., Dufresne D. & Testud P. —1992— Étude expérimentale de bulles de vapeur g’n’r’es par laser. La Houille Blanche7/8, 539–544.CrossRefGoogle Scholar
  2. Avellan F. & Farhat M. —1989— Shock pressure generated by cavitation vortex collapse. Proc. Int. Symp. on Cavitation Noise and Erosion in Fluid Systems, FED 88, San Francisco (USA), December 10–15, 119–125.Google Scholar
  3. Belahadji B., Franc J.P. & Michel J.M. —1991— A statistical analysis of cavitation erosion pits. J. Fluids Eng.113, 700–706.CrossRefGoogle Scholar
  4. Berchiche N., Franc J.P. & Michel J.M. —2002— A cavitation erosion model for ductile materials. J. Fluids Eng.124, 601–606.CrossRefGoogle Scholar
  5. Dominguez-Cortazar M.A., Michel J.M. & Franc J.P. —1997— The erosive axial collapse of a cavitating vortex: an experimental study. J. Fluids Eng.119, 686–691.CrossRefGoogle Scholar
  6. Filali E.G. & Michel J.M. —1999a— The cavermod device: hydrodynamic aspects and erosion tests. J. Fluids Eng.121, 305–311.CrossRefGoogle Scholar
  7. Filali E.G., Michel J.M., Hattori S. & Fujikawa S. —1999b— The cavermod device: force measurements. J. Fluids Eng.121, 312–317.CrossRefGoogle Scholar
  8. Franc J.P., Michel J.M., Nguyen Trong H. & Karimi A. —1994— From pressure pulses measurements to mass loss prediction: the analysis of a method. Proc. 2ndInt. Symp. on Cavitation, Tokyo (Japan), April 5–7, 231–236.Google Scholar
  9. Franc J.P. & Michel J.M. —1997— Cavitation erosion in France: the state of the art. J. Mar. Sci. Technol.2, 233–244.CrossRefGoogle Scholar
  10. Fujikawa S. & Akamatsu T. —1980— Effects of non-equilibrium condensation of vapor on the pressure wave produced by the collapse of a bubble in a liquid. J. Fluid Mech.97, part 3, 481–512.ADSzbMATHCrossRefGoogle Scholar
  11. Hattori S., Miyoshi K., Buckey D.H. & Okada T. —1986— Plastic deformation of magnesium oxide 001 surface produced by cavitation. J. Soc. Tribol. Lubr. Eng.44(1), 53–60.Google Scholar
  12. Karimi A. & Avellan F. —1986— Comparison of erosion mechanisms in different types of cavitation. Wear113, 305–322.CrossRefGoogle Scholar
  13. Karimi A. & Leo W.R. —1987— Phenomenological model for cavitation rate computation. Mat. Sci. Eng.95, 1–14.CrossRefGoogle Scholar
  14. Karimi A. —1988— Modèle math’matique pour la pr’diction de la vitesse ď’rosion. La Houille Blanche7/8, 571–576.CrossRefGoogle Scholar
  15. Kato H. —1975— A consideration on scaling laws of cavitation erosion. Intern. Shipbuilding Progress22(253), 305–327.Google Scholar
  16. Kato H., Konno A., Maeda M. & Yamaguchi H. —1996— Possibility of quantitative prediction of cavitation erosion without model test. J. Fluids Eng.118(3), 582–588.CrossRefGoogle Scholar
  17. Kenn M.J. & Garrod A.D. —1981— Cavitation damage and the Tarbela Tunnel collapse of 1974. Proc. Inst. Civ. Eng.70, part 1, 65–89.Google Scholar
  18. Knapp R.T. —1955— Recent investigations of cavitation and cavitation damage. Trans. ASME77, 1045–1054.Google Scholar
  19. Lecoffre Y., Marcoz J. & Valibouse B. —1981— Generator of cavitation vortex. ASME Fluids Eng. Conf., Boulder (USA).Google Scholar
  20. Lecoffre Y., Marcoz J., Franc J.P. & Michel J.M. —1985— Tentative procedure for scaling cavitation damage. Proc. Int. Symp. on Cavitation in Hydraulic Structures and Turbomachinery, Albuquerque (USA), June 24–26.Google Scholar
  21. Lecoffre Y. —1995— Cavitation erosion, hydrodynamics scaling laws, practical method of long term damage prediction. Proc. Int. Symp. on Cavitation, Deauville (France), May 2–5, 249–256.Google Scholar
  22. Momma T. —1991— Cavitation loading and erosion produced by a cavitating jet. PhD Thesis, Nottingham University (England).Google Scholar
  23. Nguyen Trong H. —1993— D’veloppement et validation ďune m’thode analytique de pr’vision de ľ’rosion de cavitation. PhD Thesis, Institut National Polytechnique de Grenoble (France).Google Scholar
  24. Oba R. —1994— The severe cavitation erosion. Proc. 2ndInt. Symp. on Cavitation, Tokyo (Japan), April 5–7, 1–8.Google Scholar
  25. Okada T., Hattori S. & Shimizu M. —1994— A fundamental study of cavitation erosion using a magnesium oxide single crystal (dislocation and surface roughness). Proc. 2ndInt. Symp. on Cavitation, Tokyo (Japan), April 5–7, 185–190.Google Scholar
  26. Okada T., Iwai Y., Hattori S. & Tanimura N. —1995— Relation between impact load and the damage produced by cavitation bubble collapse. Wear184, 231–239.CrossRefGoogle Scholar
  27. Philipp A. & Lauterborn W. —1998— Cavitation erosion by single laser-produced bubbles. J. Fluid Mech.361, 75–116.CrossRefADSzbMATHGoogle Scholar
  28. Preece C.M. —1979— Cavitation erosion. Treatise on Materials Science and Technology. Erosion. Academic Press16, 249–308.Google Scholar
  29. Reisman G.E., Wang Y.-C. & Brennen C.E. —1998— Observations of shock waves in cloud cavitation. J. Fluid Mech.355, 255–283CrossRefADSzbMATHGoogle Scholar
  30. Sato K. & Kondo S. —1996— Collapsing behaviour of vortex cavitation bubble near solid wall: spanwise-view study. ASME Fluids Eng. Conf.1, 485–490.Google Scholar
  31. Simoneau R. —1995— Cavitation pit counting and steady state erosion rate. Proc. Int. Symp. on Cavitation, Deauville (France), May 2–5, 265–276.Google Scholar
  32. Soyama H., Lichtarowicz A., Momma T. & Williams E. —1998— A new calibration method for dynamically loaded transducers and its application to cavitation impact measurement. J. Fluids Eng.120, 712–718.CrossRefGoogle Scholar
  33. Stinebring D.R., Arndt R.E.A. & Holl J.W. —1976— Scaling laws of cavitation damage. J. Hydronautics11, 1977.Google Scholar
  34. Thiruvengadam A. —1963— The concept of erosion strength. J. Basic Eng.85, serie D, 365–376.Google Scholar
  35. Tomita Y. & Shima A. —1986— Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse. J. Fluid Mech.169, 535–564.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Personalised recommendations