Shear Cavitation

Part of the Fluid Mechanics and Its Applications book series (FMIA, volume 76)


Shear Layer Ring Vortex STROUHAL Number Bluff Body Streamwise Vortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arndt R.E.A. —1976— Semi-empirical analysis of cavitation in the wake of a sharp-edged disk. Trans. ASME I — J. Fluids Eng.98, 560–562.CrossRefGoogle Scholar
  2. Belahadji B., Franc J.P. & Michel J.M. —1995— Cavitation in the rotational structures of a turbulent wake. J. Fluid Mech.287, 383–403.ADSCrossRefGoogle Scholar
  3. Berger E. & Wille R. —1972— Periodic flow phenomena. Ann. Rev. Fluid Mech.4, 313–340.CrossRefADSGoogle Scholar
  4. Bernall L.P. & Roshko A. —1986— Streamwise vortex structure in plane mixing layers. J. Fluid Mech.170, 499–525.ADSCrossRefGoogle Scholar
  5. Billet M.L. & Holl W.J. —1979— Scale effects on various types of limited cavitation. Proc. Int. Symp. on Cavitation Inception, ASME Winter Annual Meeting, New York (USA), December 2–7, 11–23.Google Scholar
  6. Briançon-Marjollet L. & Michel J.M. —1990— The hydrodynamic tunnel of I.M.G.: former and recent equipment. J. Fluids Eng.112, 338–342.CrossRefGoogle Scholar
  7. Brown G.L. & Roshko A. —1974— On density effects and large structure in turbulent mixing layers. J. Fluid Mech.64, 775–816.ADSCrossRefGoogle Scholar
  8. Corcos G.M. & Lin S.J. —1984— The mixing layer: deterministic models of a turbulent flow. Part 2 — the origin of the three-dimensional motion. J. Fluid Mech.139, 67–95.ADSzbMATHCrossRefGoogle Scholar
  9. Douady S., Couder Y. & Brachet M.E. —1991— Direct observation of the intermittency of intense vorticity filaments in turbulence. Phys. Rev. Lett.67, 983–986.CrossRefADSGoogle Scholar
  10. Drazin P.G. & Reid W.H. —1981— Hydrodynamic stability. Cambridge University Press.Google Scholar
  11. Franc J.P. —1982— Étude de cavitation, tome 2: sillage cavitant ďobstacles épais. PhD Thesis, Institut National Polytechnique de Grenoble (France), 66–121.Google Scholar
  12. Franc J.P., Michel J.M. & Lesieur M. —1982— Structures rotationnelles bi et tridimensionnelles dans un sillage cavitant. CR Acad. Sci.295, Paris, 773–777.ADSGoogle Scholar
  13. Grant M.L. —1958— The large eddies of turbulent motion. J. Fluid Mech.4, 149–190.ADSCrossRefGoogle Scholar
  14. Hinze J.O. —1959— Turbulence. McGraw-Hill Book Company Ed.Google Scholar
  15. Kermeen R.W. & Parkin B.R. —1957— Incipient cavitation and wake flow behind sharp edged disks. CIT Hydrodynamics Laboratory, Rpt 85-4, August.Google Scholar
  16. Knapp R.T., Daily J.W. & Hammitt F.G. —1970— Cavitation. McGraw-Hill Book Company Ed.Google Scholar
  17. Kourta A., Boisson H.C., Chassaing P. & Ha Minh H. —1987— Non-linear interaction and the transition to turbulence in the wake of a circular cylinder. J. Fluid Mech.181, 141–161.ADSCrossRefGoogle Scholar
  18. Lasheras J.C., Cho J.S. & Maxworthy T. —1986— On the origin and evolution of streamwise vortical structures in a plane, free shear layer. J. Fluid Mech.172, 231–258.ADSCrossRefGoogle Scholar
  19. Lasheras J.C. & Choi H. —1988— Three-dimensional instability of a plane free shear layer. An experimental study of the formation and evolution of streamwise vortices. J. Fluid Mech.189, 53–86.ADSCrossRefGoogle Scholar
  20. Lesieur M. —1993— Turbulence in fluids, 2nd ed. Kluwer.Google Scholar
  21. Métais O. & Lesieur M. —1992— Spectral large-eddy simulation of isotropic and stably stratified turbulence. J. Fluid Mech.239, 157–194.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  22. Morkovin M.V. —1964— Flow around circular cylinder-kaleidoscope of challenging fluid phenomena. Proc. ASME Symp. on Fully Separated Flow.Google Scholar
  23. Mumford J.C. —1983— The structure of the large eddies in fully turbulent shear flows. Part 2 — the plane wake. J. Fluid Mech.137, 447.ADSCrossRefGoogle Scholar
  24. Ooi K.K. —1985— Scale effects on cavitation inception in submerged jets: a new look. J. Fluid Mech.151, 367–390.ADSCrossRefGoogle Scholar
  25. Pauchet J. —1991— Etude théorique et expérimentale ďun jet cavitant. ACB-CERG, Rpt 21—277, Grenoble (France), October.Google Scholar
  26. Pauchet J., Retailleau A. & Woillez J. —1992— The prediction of cavitation inception in turbulent water jets. Proc. ASME Cavitation and Multiphase Flow Forum, FED 135, 149–158.Google Scholar
  27. Ramamurthy A.S. & Balachandar R. —1990— The near wake characteristics of cavitating bluff sources. J. Fluids Eng.112, 492–495.CrossRefGoogle Scholar
  28. Schlichting H. —1987— Boundary layer theory. McGraw-Hill Book Company Ed.Google Scholar
  29. Selim S.M.A. & Hutton S.P. —1983— Classification of cavity mechanics and erosion. I. Mech. E. Conf., 41–49.Google Scholar
  30. Soyama H., Kato H. & Oba R. —1992— Cavitation observations of severely erosive vortex streets. NACA, Rpt 1191.Google Scholar
  31. Townsend A.A. —1979— Flow patterns of large eddies in a wake and in a boundary layer. J. Fluid Mech.95, 515.ADSCrossRefGoogle Scholar
  32. Winant C.D. & Browand F.K. —1974— Vortex pairing: the mechanism of turbulent mixing-layer growth at moderate Reynolds number. J. Fluid Mech.63, 237–255.ADSCrossRefGoogle Scholar
  33. Young A.J. & Holl W.J. —1966— Effects of cavitation on periodic wakes behind symmetric wedges. J. Basic Eng., 163–176.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Personalised recommendations