Introduction the Main Features of Cavitating Flows

Part of the Fluid Mechanics and Its Applications book series (FMIA, volume 76)


Cavitation Number Turbulent Shear Flow CAVITATING Flow Propeller Blade Vapor Cavity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Birkhoff G. & Zarantonello E.H. —1957— Jets, wakes and cavities. Academic Press Inc.Google Scholar
  2. Blake F.G. —1949 — The tensile strength of liquids: a review of the literature. Harvard Acoustics Res. Lab. TM 9, June.Google Scholar
  3. Cole R.H. —1948— Underwater explosions. Princeton University Press.Google Scholar
  4. Genous P. & Chahine G.L. —1983 — Équilibre statique et dynamique ďun tore de vapeur tourbillonnaire. J. Méc. Théor. Appl.2(5), 829–857.Google Scholar
  5. Jacob C. —1959 — Introduction mathématique à la mécanique des fluides. Gauthier-Villars Ed.Google Scholar
  6. Knapp R.T., Daily J.W. & Hammitt F.G. —1970— Cavitation. McGraw-Hill Book Company Ed., 578 p.Google Scholar
  7. Lamb H. —1923 — The early stages of a submarine explosion. Phil. Mag.45, 257 sq.zbMATHGoogle Scholar
  8. Lesieur M. —1998 — Vorticity and pressure distributions in numerical simulations of turbulent shear flows. Proc. 3rdInt. Symp. on Cavitation, vol. 1, Grenoble (France), April 7–9, 9–18.Google Scholar
  9. Levkovsky Y.L. —1978— Structure of cavitating flows. Sudostroenie Publishing House, Leningrad (Russia), 222 p.Google Scholar
  10. Ligneul P. —1989 — Theoretical tip vortex cavitation inception threshold. Eur. J. Mech. B/Fluids8, 495–521.zbMATHGoogle Scholar
  11. Pernik A.D. —1966— Problems of cavitation. Sudostroenie Publishing House, Leningrad (Russia), 439 p.Google Scholar
  12. Plesset M.S. —1949 — The dynamics of cavitation bubbles. J. Appl. Mech.16, 277 sq.Google Scholar
  13. Rayleigh (Lord) —1917— The pressure developed in a liquid during the collapse of a spherical cavity. Phil. Mag.34, 94 sq.zbMATHGoogle Scholar
  14. Rozhdestvensky V.V. —1977— Cavitation. Sudostroenie Publishing House, Leningrad (Russia), 247 p.Google Scholar
  15. Tulin M.P. —1953 — Steady two-dimensional cavity flows about slender bodies. DTMB, Rpt 834.Google Scholar
  16. Wu T.Y.T. —1956 — A free streamline theory for two-dimensional fully cavitated hydrofoils. J. Math. Phys.35, 236–265.zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Personalised recommendations