Skip to main content

Structural and functional studies of muscle proteins by using differential scanning calorimetry

  • Chapter
The Nature of Biological Systems as Revealed by Thermal Methods

Part of the book series: Hot Topics in Thermal Analysis and Calorimetry ((HTTC,volume 5))

Conclusion

The DSC approach offers new unique opportunities for structural and functional studies on muscle proteins. It allows very clear revealing and following detailed investigation of global structural changes that occur in the myosin head during ATPase reaction and due to interaction with actin. This approach, in combination with other methods, allows to investigate long-distance communication pathways between functionally important but spatially far regions in the myosin head. DSC also provides a new and promising approach for studying of highly cooperative conformational changes in actin filaments induced by actin-binding proteins. Moreover, DSC in combination with other methods is very useful for structural characterization of tropomyosin on the surface of actin filaments. Thus, DSC studies on muscle proteins offer a promising approach to probe and investigate structural changes which play an important role in functioning of these proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Privalov, P. L. and Potekhin, S. A.: Scanning microcalorimetry in studying temperature-induced changes in proteins, Methods. Enzymol., 131 (1986) 4–51.

    CAS  Google Scholar 

  2. Shnyrov, V. L., Sanchez-Ruiz, J. M., Boiko, B. N., Zhadan, G. G. and Permyakov, E. A.: Application of scanning microcalorimetry in biophysics and biochemistry, Thermochim. Acta, 302 (1997) 165–180.

    Article  Google Scholar 

  3. Privalov, P. L.: Stability of proteins. Proteins which do not present a single cooperative system, Adv. Protein. Chem., 35 (1982) 1–104.

    CAS  Google Scholar 

  4. Sturtevant, J. M.: Biochemical applications of differential scanning calorimetry, Annu. Rev. Phys. Chem., 38 (1987) 463–488.

    Article  CAS  Google Scholar 

  5. Hodge, T. and Cope, M. J. T. V.: A myosin family tree, J. Cell Sci., 113 (2000) 3353–3354.

    CAS  Google Scholar 

  6. Cope, M. J. T. V., Whisstock, J., Rayment, I. and Kendrick-Jones, J. K.: Conservation within the myosin motor domain: implications for structure and function, Structure, 4 (1996) 969–987.

    Article  CAS  Google Scholar 

  7. Cheney, R. E. and Mooseker, M. S.: Unconventional myosins, Curr. Opin. Cell Biol., 4 (1992) 27–35.

    Article  CAS  Google Scholar 

  8. Sellers, J. S., Goodson, H. V. and Wang, F.: A myosin family reunion, J. Muscle Res. Cell Motil., 17 (1996) 7–22.

    CAS  Google Scholar 

  9. Harrington, W. F.: On the origin of the contractile force in skeletal muscle, Proc. Natl. Acad. Sci. USA, 76 (1979) 5066–5070.

    CAS  Google Scholar 

  10. Potekhin, S. A., Trapkov, V. A. and Privalov, P. L.: Stages in the thermal denaturation of spiral fragments of myosin, Biofizika, 24 (1979) 46–50.

    CAS  Google Scholar 

  11. Shnyrov, V. L., Vedenkina, N. S., Ostrovsky, A. V., Permyakov, E. A., Golitsina, N. L. and Levitsky, D. I.: Study of thermal denaturation of the rod part of myosin molecule by microcalorimetry and intrinsic fluorescence methods, Biofizika, 35 (1990) 415–420.

    CAS  Google Scholar 

  12. Lopez-Lacomba, J. L., Guzman, M., Cortijo, M., Mateo, P. L., Aguirre, R., Harvey, S. C. and Cheung, H. C.: Differential scanning calorimetric study of the thermal unfolding of myosin rod, light meromyosin, and subfragment 2, Biopolymers, 28 (1989) 2143–2159.

    Article  CAS  Google Scholar 

  13. Bertazzon, A. and Tsong, T. Y.: Study of effects of pH on the stability of domains in myosin rod by high-resolution differential scanning calorimetry, Biochemistry, 29 (1990) 6453–6459.

    CAS  Google Scholar 

  14. Nakaya, M., Watabe, S. and Ooi, T.: Differences in the thermal stability of acclimation temperature-associated types of carp myosin and its rods on differential scanning calorimetry, Biochemistry, 34 (1995) 3114–3120.

    Article  CAS  Google Scholar 

  15. Swenson, C. A. and Ritchie, P. A.: Conformational transitions in the subfragment-2 region of myosin, Biochemistry, 19 (1980) 5371–5375.

    Article  CAS  Google Scholar 

  16. Cross, R. A., Bardsley, R. G., Ledward, D. A., Small, J. V. and Sobieszek, A.: Conformational stability of the myosin rod, Eur. J. Biochem., 145 (1984) 305–310.

    Article  CAS  Google Scholar 

  17. Bertazzon, A. and Tsong, T. Y.: Effects of ions and pH on the thermal stability of thin and thick filaments of skeletal muscle: high-sensitivity differential scanning calorimetric study, Biochemistry, 29 (1990) 6447–6452.

    CAS  Google Scholar 

  18. Ueno, H. and Harrington, W. F.: Cross-bridge movement and the conformational state of the myosin hinge in skeletal muscle, J. Mol. Biol., 149 (1981) 619–640.

    Article  CAS  Google Scholar 

  19. Reisler, E. and Liu, J.: Conformational changes in the myosin subfragment-2. Effect of pH on synthetic rod filaments, J. Mol. Biol., 157 (1982) 659–669.

    Article  CAS  Google Scholar 

  20. Zolkiewski, M., Redowicz, M. J., Korn, E. D. and Ginsburg, A.: Thermal unfolding of Acanthamoeba myosin II and skeletal muscle myosin, Biophys. Chem., 59 (1996) 365–371.

    Article  CAS  Google Scholar 

  21. Zolkiewski, M., Redowicz, M. J., Korn, E. D., Hammer J. A. III, and Ginsburg, A.: Two-state thermal unfolding of a long dimeric coiled-coil: the Acanthamoeba myosin II rod, Biochemistry, 36 (1997) 7876–7883.

    Article  CAS  Google Scholar 

  22. Toyoshima, Y. Y., Kron, S. J., McNully, E. M., Niebling, K. R., Toyoshima, C. and Spudich, J. A.: Myosin subfragment-1 is sufficient to move actin filaments in vitro, Nature, 328 (1987) 536–539.

    Article  CAS  Google Scholar 

  23. Johnson, K. A. and Taylor, E. W.: Intermediate states of subfragment 1 and actosubfragment 1 ATPase: reevaluation of the mechanism, Biochemistry, 17 (1979) 3432–3442.

    Google Scholar 

  24. Goodno, C. C.: Myosin active site trapping with vanadate ion, Meth. Enzymol., 85 (1982) 116–123.

    CAS  Google Scholar 

  25. Phan, B. C. and Reisler, E.: Inhibition of myosin ATPase by berillium fluoride, Biochemistry, 31 (1992) 4787–4793.

    Article  CAS  Google Scholar 

  26. Werber, M. M., Peyser, Y. M. and Muhlrad, A.: Characterization of stable beryllium fluoride, aluminum fluoride, and vanadate containing myosin subfragment 1-nucleotide complexes, Biochemistry, 31 (1992) 7190–7197.

    Article  CAS  Google Scholar 

  27. Gopal, D. and Burke, M.: Formation of stable inhibitory complexes of myosin subfragment 1 using fluoroscandium anion, J. Biol. Chem., 270 (1995) 19282–19286.

    Article  CAS  Google Scholar 

  28. Fisher, A. J., Smith, C. A., Thoden, J., Smith, R., Sutoh, K., Holden, H. M. and Rayment, I.: Structural studies of myosin:nucleotide complexes: a revised model for the molecular basis of muscle contraction, Biophys. J., 68 (1995) 19s–28s.

    CAS  Google Scholar 

  29. Ponomarev, M. A., Timofeev, V. P. and Levitsky, D. I.: The difference between ADP-beryllium fluoride and ADP-aluminum fluoride complexes of the spin-labeled myosin subfragment 1, FEBS Lett., 371 (1995) 261–263.

    Article  CAS  Google Scholar 

  30. Shriver, J. M. and Kamath, U.: Differential scanning calorimetry of the unfolding of myosin subfragment 1, subfragment 2, and heavy meromyosin, Biochemistry, 29 (1990) 2556–2564.

    Article  CAS  Google Scholar 

  31. Khvorov, N. V., Levitsky, D. I., Bukatina, A. E., Shnyrov, V. L. and Poglazov, B. F.: Calorimetric evidence for two conformational states of the complex of myosin subfragment 1 with nucleotides, Doklady Akad. Nauk SSSR, 315 (1990) 745–748.

    CAS  Google Scholar 

  32. Lörinczy, D. and Belagyi, J.: Effects of nucleotide on skeletal muscle myosin unfolding in myofibrils by DSC, Biophys. Biochem. Res. Commun., 217 (1995) 592–598.

    Google Scholar 

  33. Lörinczy, D. and Belagyi, J.: Nucleotide binding induces global and local structural changes of myosin head in muscle fibers, Eur. J. Biochem., 268 (2001) 5970–5976.

    Google Scholar 

  34. Levitsky, D. I., Shnyrov, V. L., Khvorov, N. V., Bukatina, A. E., Vedenkina, N. S., Permyakov, E. A., Nikolaeva, O. P. and Poglazov, B. F.: Effects of nucleotide binding on thermal transitions and domain structure of myosin subfragment 1, Eur. J. Biochem., 209 (1992) 829–835.

    Article  CAS  Google Scholar 

  35. Bobkov, A. A., Khvorov, N. V., Golitsina, N. L. and Levitsky, D. I.: Calorimetric characterization of the stable complex of myosin subfragment 1 with ADP and beryllium fluoride, FEBS Lett., 332 (1993) 64–66.

    Article  CAS  Google Scholar 

  36. Levitsky, D. I., Bobkov, A. A., Golitsina, N. L., Nikolaeva, O. P., Pavlov, D. A. and Poglazov, B. F.: Calorimetric studies on the stable complexes of myosin ubfragment 1 with ADP and phosphate analogues, Biofizika, 41 (1996) 64–72.

    Google Scholar 

  37. Levitsky, D. I., Nikolaeva, O. P., Orlov, V. N., Pavlov, D. A., Ponomarev, M. A. and Rostkova, E. V.: Differential scanning calorimetric studies on myosin and actin, Biochemistry (Moscow), 63 (1998) 322–333.

    CAS  Google Scholar 

  38. Bobkov, A. A. and Levitsky, D. I.: Differential scanning calorimetric study of the complexes of myosin subfragment 1 with nucleoside diphosphates and vanadate or be ryllium fluoride, Biochemistry, 34 (1995) 9708–9713.

    Article  CAS  Google Scholar 

  39. Gopal, D., Bobkov, A. A., Schwonek, J. P., Sanders, C. R., Ikebe, M., Levitsky, D. I. and Burke, M.: Structural basis of actomyosin chemo-mechanical transduction by non-nucleoside triphosphate analogues, Biochemistry, 34 (1995) 12178–12184.

    Article  CAS  Google Scholar 

  40. Gopal, D., Pavlov, D. A., Levitsky, D. I., Ikebe, M. and Burke, M.: Chemomechanical transducion in the actomyosin molecular motor by 2′,3′-dideoxydidehydro-ATP and characterization of its interaction with myosin subfragment 1 in the presence and absence of actin, Biochemistry, 35 (1996) 10149–10157.

    CAS  Google Scholar 

  41. Levitsky, D. I., Ponomarev, M. A., Geeves, M. A., Shnyrov, V. L. and Manstein, D. J.: Differential scanning calorimetric study of the thermal unfolding of the motor domain fragments of Dictyostelium discoideum myosin II, Eur. J. Biochem., 251 (1998) 275–280.

    Article  CAS  Google Scholar 

  42. Pavlov, D. A., Sobieszek, A. and Levitsky, D. I. Calorimetric studies of the thermal unfolding of smooth muscle myosin fragments and their complexes with ADP and phosphate analogs, Biochemistry (Moscow), 63 (1998) 952–962.

    CAS  Google Scholar 

  43. Pavlov, D. A., Bobkov, A. A., Nikolaeva, O. P., Magretova, N. N., Dedova, I. V. and Levitsky, D. I.: Thermal denaturation of myosin subfragment 1 modi fied at residue Lys-83 and its changes induced by nucleotide binding, Biochemistry (Moscow), 60 (1995) 835–842.

    Google Scholar 

  44. Golitsina, N. L., Bobkov, A. A., Dedova, I. V., Pavlov, D. A., Nikolaeva, O. P., Orlov, V. N. and Levitsky, D. I.: Differential scanning calorimetric study of the complexes of modified myosin subfragment 1 with ADP and vanadate or beryllium fluoride, J. Muscle Res. Cell Motil., 17 (1996) 475–485.

    Article  CAS  Google Scholar 

  45. Levitsky, D. I., Khvorov, N. V., Shnyrov, V. L., Vedenkina, N. S., Permyakov, E. A. and Poglazov, B. F.: Do main structure of myosin subframent-1. Selective denaturation of the 50 kDa segment, FEBS Lett., 264 (1990) 176–178.

    Article  CAS  Google Scholar 

  46. Levitsky, D. I., Nikolaeva, O. P., Vedenkina, N. S., Shnyrov, V. L., Golitsina, N. L., Khvorov, N. V., Permyakov, E. A. and Poglazov, B. F.: The effect of alkali light chains on the ther malstability of myosin subfragment 1, Biomedical Science, 2 (1991) 140–146.

    CAS  Google Scholar 

  47. Golitsina, N. L., Shnyrov, V. L. and Levitsky, D. I.: Thermal denatur ation of the alkali light chain-20 kDa fragment complex obtained from my osin subfragment 1, FEBS Lett., 303 (1992) 255–257.

    Article  CAS  Google Scholar 

  48. Levitsky, D. I.: Do main Struc ture of the Myosin Head. In Soviet Sci. Rev. — Physico-Chem. Biol., (Skulachev, V. P., ed), v. 12, Pt. 1, Harwood Acad. Publ. GmbH (1994) pp. 1–53.

    Google Scholar 

  49. Levitsky, D. I.: The structure of the myosin head, Biokhimiya, 56 (1991) 1539–1566.

    Google Scholar 

  50. Rayment, I., Rypniewski, W. R., Schmidt-Base, K., Smith, R., Tomchick, D. R., Benning, M. M., Winkelmann, D. A., Wesenberg, G. and Holden, H. M.: Three-dimansional structure of myosin subfragment 1: a molecular motor, Science, 261 (1993) 50–58.

    CAS  Google Scholar 

  51. Zubov, E O. and Levitsky, D. I.: Tight coupling between the motor domain and the regulatory do main of the myosin head complexed with ADP and phospahate analogues, J. Muscle Res.Cell Motil., 23 (2002) 15.

    Google Scholar 

  52. Houdusse, A., Szent-Györgyi, A. G. and Cohen, C.: Three conformational states of scallop myosin S1, Proc. Natl. Acad. Sci. USA, 97 (2000) 11238–11243.

    Article  CAS  Google Scholar 

  53. Brandts, J. F. and Lin, L.-N.: Study of strong to ultratight protein interactions using differential scanning calorimetry, Biochemistry, 29 (1990) 6927–6940.

    Article  CAS  Google Scholar 

  54. Nikolaeva, O. P., Orlov, V. N., Dedova, I. V., Drachev, V. A. and Levitsky, D. I.: Interaction of myosin subfragment 1 with F-actin studied by differential scanning calorimetry, Biochem. Mol. Biol. Internat., 40 (1996) 653–661.

    CAS  Google Scholar 

  55. Ponomarev, M. A., Furch, M., Levitsky, D. I. and Manstein, D. J.: Charge changes in loop 2 affect the thermal unfolding of the myosin motor domain bound to F-actin, Biochemistry, 39 (2000) 4527–4532.

    Article  CAS  Google Scholar 

  56. Chalovich, J. M., Greene, L. E. and Eisenberg, E.: Crosslinked myosin subfragment 1: a stable analogue of the subfragment-1 ATP complex, Proc. Natl. Acad. Sci. USA, 80 (1983) 4909–4913.

    CAS  Google Scholar 

  57. Xie, L. and Schoenberg, M.: Binding of SH-SH2-modified myosin subfragment-1 to actin, Biochemistry, 37 (1998) 8048–8053.

    CAS  Google Scholar 

  58. Kaspieva, O. V., Nikolaeva, O. P., Orlov, V. N., Ponomarev, M. A. and Levitsky, D. I.: Changes in the thermal unfolding of p-phenylenedimaleimide-modified myosin subfragment 1 in duced by its “weak” binding to F-actin, FEBS Lett., 489 (2001) 144–148.

    Article  CAS  Google Scholar 

  59. Bobkov, A. A. and Reisler, E.: Is SH1-SH2-cross-linked myosin subfragment 1 a structural analog of the weakly-bound state of myosin? Biophys. J., 79 (2000) 460–467.

    CAS  Google Scholar 

  60. Levitsky, D. I., Shakirova, L. I., Mikhailova, V. V., Siletskaya, E. I. and Timofeev, V. P.: Nucleotide-induced and actin-induced structural changes in myosin subfragment 1 modified at both SH1 and SH2 groups, Abstracts of XXX European Muscle Conference, (Pavia, Italy, 2001) 85.

    Google Scholar 

  61. Tsiavaliaris, G., Fujita-Becker, S., Batra, R., Levitsky, D. I., Kull, F. J., Geeves, M. A. and Manstein, D. J.: Mutations in the relay loop region result in dominant-negative inhibition of myosin II function in Dictyostelium, EMBO Reports, 3 (2002) 1099–1105.

    CAS  Google Scholar 

  62. Ponomarev, M., Furch, M., Knetsch, M., Manstein, D. and Levitsky, D.: Changes in loop 2 affect the thermal unfolding of myosin head fragments while complexed to F-actin, J. Muscle Res.Cell Motil., 20 (1999) 72.

    Google Scholar 

  63. Nikolaeva, O. P., Orlov, V. N., Bobkov, A. A. and Levitsky, D. I.: Differential scanning calorimetric study of myosin subfragment 1 with tryptic cleavage at the N-terminal region of the heavy chain, Eur. J. Biochem., 269 (2002) 5678–5688.

    Article  CAS  Google Scholar 

  64. Tatunashvili, L. V. and Privalov, P. L.: Calori metric investigation of G-actin denaturation, Biofizika, 29 (1984) 583–585.

    CAS  Google Scholar 

  65. Bertazzon, A., Tian, G. H., Lamblin, A. and Tsong, T. Y.: Enthalpic and entropic contributions to actin stability: calorimetry, circular dichroism, and fluorescence study and effects of calcium, Biochemistry, 29 (1990) 291–298.

    CAS  Google Scholar 

  66. Le Bihan, T. and Gicquaud, C.: Kinetic study of the thermal denaturation of G-actin using differential scanning calorimetry and intrinsic fluorescence spectroscopy, Biochem. Biophys. Res. Commun., 194 (1993) 1065–1073.

    Google Scholar 

  67. Kabsch, W., Mannherz, H. G., Suck, D., Pai, E. F. and Holmes, K. C.: Atomic structure of the actin-Dnase I complex, Nature, 347 (1990) 37–44.

    Article  CAS  Google Scholar 

  68. Lörinczy, D., Könczol, F., Gaszner, B. and Belagyi, J.: Structural stability of actin filaments as studied by DSC and EPR, Thermochim. Acta, 322 (1998) 95–100.

    Google Scholar 

  69. Nikolaeva, O. P., Dedova, I. V., Khvorova, I. S. and Levitsky, D. I.: Interaction of F-actin with phosphate analogues studied by differential scanning calorimetry, FEBS Lett., 351 (1994) 15–18.

    Article  CAS  Google Scholar 

  70. Le Bihan, T. and Gicquaud, C.: Stabilization of actin by phalloidin: a differential scanning calorimetric study, Biochem. Biophys. Res. Commun., 181 (1991) 542–547.

    Article  Google Scholar 

  71. Combeau, C. and Carlier, M.-F.: Probing the mech a nism of ATP hydrolysis on F-actin using vanadate and the structural analogs of phos phate BeF 3 and AlF 4 J. Biol. Chem., 263 (1988) 17429–17436.

    CAS  Google Scholar 

  72. Orlova, A. and Egelman, E. H.: Structural basis for the destabilization of F-actin by phosphate release following ATP hydrolysis, J. Mol. Biol., 232 (1993) 334–341.

    Article  CAS  Google Scholar 

  73. Muhlrad, A., Cheung, P., Phan, B. C., Miller, C. and Reisler, E.: Dynamic properties of actin. Structural changes in duced by beryllium fluoride, J. Biol. Chem., 269 (1994) 11852–11858.

    CAS  Google Scholar 

  74. Bombardier, H., Wong, P. and Gicquaud, C.: Effects of nucleotides on the denaturation of F-actin: a differential scanning calorimetry and FTIR spectroscopy study, Biochem. Biophys. Res. Commun., 236 (1997) 798–803.

    Article  CAS  Google Scholar 

  75. Sanchez-Ruiz, J. M.: Theretical analysis of Lumry-Eyring models in differential scanning calorimetry, Biophys. J., 61 (1992) 921–935.

    CAS  Google Scholar 

  76. Kurganov, B. I., Kornilaev, B. A., Chebotareva, N. A., Malikov, V. Ph., Orlov, V. N., Lyubarev, A. E. and Livanova, N. B.: Dissociative mechanism of thermal denaturation of rabbit skeletal muscle glycogen phosphorylase b, Biochemistry, 39 (2000) 13144–13152.

    Article  CAS  Google Scholar 

  77. dos Remedios, C. G., Chhabra, D., Kekic, M., Dedova, I. V., Tsubakihara, M., Berry, D. A. and Nosworthy, N. J.: Actin binding proteins and regulation of cytoskeleton microfilaments, Physiol. Rev., 83 (2003) 433–473.

    Google Scholar 

  78. Levitsky, D. I., Rostkova, E. V., Orlov, V. N., Nikolaeva, O. P., Moiseeva, L. N., Teplova, M. V. and Gusev, N. B.: Complexes of smooth muscle tropomyosin with F-actin studied by differential scanning calorimetry, Eur. J. Biochem., 267 (2000) 1869–1877.

    Article  CAS  Google Scholar 

  79. Kremneva, E. V., Nikolaeva, O. P., Gusev, N. B. and Levitsky, D. I.: Effects of troponin on the thermal unfolding of actin-bound tropomyosin, Biochemistry (Moscow), 68 (2003) 802–809.

    Article  CAS  Google Scholar 

  80. Nikolaeva, O. P., Dedova, I. V., Mikhailova, V. V. and Levitsky, D. I.: Effects of cofilin on the thermal unfolding of actin, J. Muscle Res. Cell Motil., 23 (2002) 24–25.

    Google Scholar 

  81. Gicquaud, C.: Actin conformation is drastically altered by direct interaction with membrane lipids: a differential scanning calorimetry study, Biochemistry, 32 (1993) 11873–11877.

    Article  CAS  Google Scholar 

  82. Potekhin, S. A. and Privalov, P. L.: Cooperative blocks in tropomyosin, J. Mol. Biol., 159 (1982) 519–535.

    Article  CAS  Google Scholar 

  83. Sturtevant, J. M., Holtzer, M. E. and Holtzer, A.: A scanning calorimetric study of the thermally in duced unfolding of various forms of tropomyosin, Biopolymers, 31 (1991) 489–495.

    Article  CAS  Google Scholar 

  84. O’Brien, R., Sturtevant, J. M., Wrabl, J., Holtzer, M. E. and Holtzer, A.: A scanning calorimetric study of unfolding equilibria in homodimeric chicken gizzard tropomyosin, Biophys. J., 70 (1996) 2403–2407.

    CAS  Google Scholar 

  85. Orlov, V. N., Rostkova, E. V., Nikolaeva, O. P., Drachev, V. A. Gusev, N. B. and Levitsky, D. I.: Thermally induced chain exchange of smooth muscle tropomyosin dimers studied by differential scanning calorimetry, FEBS Lett., 433 (1998) 241–244.

    CAS  Google Scholar 

  86. Krishnan, K. S., Brandts, J. F. and Lehrer, S. S.: Effects of an interchain disulfide bond on tropomyosin structure, FEBS Lett., 91 (1978) 206–208.

    Article  CAS  Google Scholar 

  87. Williams, D. L. Jr. and Swenson, C. A.: Tropomyosin stability: assignment of thermally induced conformational transitions to separate regions of the molecule, Biochemistry, 20 (1981) 3856–3864.

    CAS  Google Scholar 

  88. Lehman, W., Hatch, V., Korman, V., Rosol, M., Thomas, L., Maytum, R., Geeves, M. A., Van Eyk, J. E., Tobacman, L. S. and Craig, R.: Tropomyosin and actin isoforms modulate the localization of tropomyosin strands on actin filaments, J. Mol. Biol., 302 (2000) 593–606.

    Article  CAS  Google Scholar 

  89. Lehman, W., Vibert, P. and Craig, R.: Visualization of caldesmon on smooth muscle thin filaments, J. Mol. Biol., 274 (1997) 310–317.

    Article  CAS  Google Scholar 

  90. Smith, D. A., Maytum, R. and Geeves, M. A.: Cooperative regulation of myosin-actin interactions by a continuous flexible chain. I: Actin-tropomyosin systems, Biophys. J., 84 (2003) 3155–3167.

    CAS  Google Scholar 

  91. Morozova, L. A., Gusev, N. B., Shnyrov, V. L. and Permyakov, E. A.: Study of the physico-chemical properties of troponins I and T from the heart and skeletal muscles using protein fluorescence and calorimetry methods, Biokhimiya, 53 (1988) 531–540.

    CAS  Google Scholar 

  92. Tsalkova, T. N. and Provalov, P. L.: Stability of troponin C, Biochim. Biophys. Acta, 624 (1980) 196–204.

    CAS  Google Scholar 

  93. Ingraham, R. H. and Swenson, C. A.: Stability of the Ca2+-specific and Ca2+-Mg2+ domains of troponin C. Effect of pH, Eur. J. Biochem., 132 (1983) 5–88.

    Article  Google Scholar 

  94. Bogatcheva, N. V. and Gusev, N. B.: Interaction of smooth muscle calponin with phospholipids, FEBS Lett., 371 (1995) 123–126.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Levitsky, D.I. (2004). Structural and functional studies of muscle proteins by using differential scanning calorimetry. In: Lörinczy, D. (eds) The Nature of Biological Systems as Revealed by Thermal Methods. Hot Topics in Thermal Analysis and Calorimetry, vol 5. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2219-0_6

Download citation

Publish with us

Policies and ethics