Skip to main content

Using DSC for monitoring protein conformation stability and effects on fat droplets crystallinity in complex food emulsions

  • Chapter
The Nature of Biological Systems as Revealed by Thermal Methods

Part of the book series: Hot Topics in Thermal Analysis and Calorimetry ((HTTC,volume 5))

  • 1076 Accesses

  • 6 Citations

Conclusion

DSC is used to investigate heat-induced conformational or structural changes of a broad range of food ingredients (biopolymers, proteins, fats, sugars, emulsifiers) in various physico-chemical conditions, and at various weight fractions of water. Detailed description of principles and methodologies employed to obtain DSC signals and to extract information may be found in the large body of data that were published since several de cades. They show a great influence of several intrinsic and extrinsic factors on calorimetric data, making difficult any generalization. In the present work, we showed that DSC can give valuable information on how examples of protein solutions and emulsions behave under various physico-chemical conditions used for preparation of complex food emulsions. Besides the well established effects of physico-chemical environmental parameters on heat-induced conformation changes of globular proteins, DSC in scanning mode can be used for evaluation of growing of fat crystals in complex food emulsions as a function of cooling temperature and in relation to other characteristics of emulsion stability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abd El Rahman A. M., Madkor, S. A., Ibrahim, F. S., Kilara, A. (1997) Physical characteristics of frozen desserts made with cream, anhydrous milk fat or milk fat fraction J. Dairy Sci., 80, 1926–1935.

    Google Scholar 

  2. Barfod, N. M., Krog, N., Larsen, G., Buchheim, W. (1991) Effects of emulsifiers on protein-fat interaction in ice-cream mixduring ageing. I. Quantitative analyses, Fat Sci. Technol., 93, 24–29.

    CAS  Google Scholar 

  3. Barone, G., Del Vecchio, P., Fessas, D., Giancola, C., Graziano, G., Riccio, A., (1994), in Russo N., J. Anastasso-Poulou and Barone G. (eds), Chemistry and Properties of Biomolecular Systems, Kluwer Ac. Publ., Vol 2, p. 49.

    Google Scholar 

  4. Bolliger S., Goff H. D., Tharp B. W. (2000) Correlation between colloidal properties of ice cream mix and ice cream, Int. Dairy J., 10, 303–309.

    CAS  Google Scholar 

  5. Boode K., Walstra, P de Groot-Mostert, A.E (1993) Partial coalescence in oil-in-water emulsions. 2. In fluence of the properties of the fat, Colloids and Surfaces A., 81, 139–151.

    CAS  Google Scholar 

  6. Brandts, J. F., and Lin, L. N. (1990) Study of strong to ultratight protein interactions using differential scanning calorimetry, Biochemistry, 29, 6927–6940.

    Article  CAS  Google Scholar 

  7. Britten M., Giroux, H. J. (1993) Interfacial properties of milk protein-stabilized emulsions as influenced by protein concentration, J. Agric. Food Chem., 41, 1187–1191.

    Article  CAS  Google Scholar 

  8. Chen J., Dickinson, E., Iveson, G (1993) Interfacial interactions, competitive adsorption and emulsion stability, Food Stuct., 12, 135–146.

    CAS  Google Scholar 

  9. Clausse, D., Dumas, J. P. Meijer, P. H. E. Broto, F. (1987) Phase transformation in emulsions, J. Disp. Sci. Tech., 8, 1–6.

    CAS  Google Scholar 

  10. Cooper, A. (1999) Thermodynamics of protein folding and stability, in Protein: A comprehensive treatrise, Vol 2, pp. 217–270, Allen Geoffrey (ed) JAI Press Inc.

    Google Scholar 

  11. Dalgleish, D. G. (1996) Conformations and structures of milk proteins adsorbed to oil-water interfaces, Food Res. Int., 29, 541–547.

    Article  CAS  Google Scholar 

  12. Dalgleish, D. G., Van Mourik, L., Corredig, M. (1997) Heat-induced in teractions of whey proteins and casein micelles with different concentrations of α-lactalbumin and β-lactoglobulin, J. Agric. Food Chem., 45, 4806–4813.

    CAS  Google Scholar 

  13. De Wit, J. N., Klarenbeek, G., (1984) Effects of various treatments on structure and solubility of whey proteins, J. Dairy Sci., 67, 2701–2710.

    Google Scholar 

  14. Dickinson, E. and McClements, D. J (1995) Fat crystallization in oil-in-water emulsions, in Advances in Food Colloids, Eds (Dickinson E. and McClements D. J), Blakie Academic & Professional, London-UK, p. 211–246.

    Google Scholar 

  15. Dickinson, E. (1992) Structure and composition of adsorbed protein layers and the relationship to emulsion stability, J. Chem. Soc. Faraday Trans., 88, 2973–2983.

    CAS  Google Scholar 

  16. Dickinson, E., Gelin, J. L (1992) Influence of emulsifier on competitive adsorption of a-s-casein and β-lactoglobulin in oil-in-water emulsions, Colloid Surface, 63, 329–335.

    CAS  Google Scholar 

  17. Dickinson, E., Goller, M. I., McClements, D. J, Peasgood, S., Povey, M. J. W. (1990), Ultrasonic monitoring of crystallization in an oil-in-water emulsion, J. Chem. Soc. Faraday Trans., 86, 1147–1155.

    CAS  Google Scholar 

  18. Dickinson, E. (1997) Properties of emulsions stabilized with milk proteins: overview of some recent developments, J. Dairy Sci., 80, 2607–2619.

    CAS  Google Scholar 

  19. Dono van, M. and Mulvihill, D.M (1987)., Thermal denaturation and aggregation of whey proteins, Irish J. Food Sci. Technol., 11, 87–100.

    Google Scholar 

  20. Freire, E, and Biltonen, R. L. (1978) Statistical mechanical deconvolution of thermal transitions in macromolecules, I. Theory and application to homogeneous systems. Biopolymers, 17, 463–479.

    CAS  Google Scholar 

  21. Garti, N., and Jano, J. (2001) The roles of emulsifiers in fat crystallization, in Crystallization processes in fats and lipid sys tems, Garti N and Sato K (eds) Marcel Dekker, New York, p. 211–250.

    Google Scholar 

  22. Gelin, J. L., Poyen, L., Courthaudon, J. L., Meste, M., Lorient, D. (1994) Structural changes in oil-in-water emulsions during the manufac ture of ice cream, Food Hydrocoll., 8, 299–308.

    CAS  Google Scholar 

  23. Hagemann, J. W (1988) Thermal behaviour and polymorphism of acylglycerides, in: Crystal lization and polymorphism of fats and fatty acids, Garti N. and Sato K. (eds), Marcel Dekker, Inc., p. 9–98.

    Google Scholar 

  24. Haque, Z., Kristjansson, M. M., Kinsella, J. E. (1987) Interaction between k-casein and β-lactoglobulin: possible mechanisms, J. Agric. Food Chem., 35, 644–649.

    Article  CAS  Google Scholar 

  25. Harwalkar, V. R. and Ma, C. Y (1990). Thermal Analysis of foods, Elsevier Appl. Sci. Publ., England

    Google Scholar 

  26. Hartel, R. W (1997) in Phase/state transitions in foods, M.A. Rao and R.W. Hartel (eds), Marcel Dekker, New York.

    Google Scholar 

  27. Hindle, S., Povey, M. J. I., and Smith, K. (2000) Kinetics of crystallization in n-hexadecane and cocoa butter oil-in-water emulsions accouning for droplet collision-mediated nucleation, J. Colloid Interface Sci., 232, 370–380.

    Article  CAS  Google Scholar 

  28. Höhne, G. W. H., Hemminger, W. and Flammersheim H.-. (1996) Differential Scanning Calorimetry. An introduction for practitioners. Springer-Verlag, Berlin, Heidelberg, New York

    Google Scholar 

  29. Holt, C., and Sawyer, L. (1988) Primary and predicted secondary structures of caseins in relation to their biological functions, Protein Eng., 2, 241–259.

    Google Scholar 

  30. Hunt, J. A. and Dalgleish, D. G. (1994) Adsorption behavior of whey protein isolate and caseinate in Soya oil-in-water emulsions, Food Hydrocoll., 8, 175–187.

    CAS  Google Scholar 

  31. Hunt, J. and Dalgleish, D. G. (1995) Heat sta bility of oil-in-water emulsions containing milk proteins: effects of ionic strength and pH, J. Food Sci., 60, 1120–1123.

    CAS  Google Scholar 

  32. Kinsella, J. E., Whitehead, D. M.(1989) Proteins in whey: chemical, physical and functional properties, Adv. Food Nutr. Res., 33, 343–438.

    CAS  Google Scholar 

  33. Lefbvre, J, and Relkin, P. (1996) Denaturation of globular proteins in relation to their functional properties. In Surface activity of proteins, S. Magdassi (ed), Marcel Dekker, Inc., New York

    Google Scholar 

  34. Liu, T., Relkin, P., Launay, B. (1994) Thermal denaturation and heat-induced gelation of β-lactoglobulin: effects of some chemical parameters, Thermochim. Acta, 246, 387–403.

    Article  CAS  Google Scholar 

  35. Lopez, C., Lesieur, P., Keller, G. and Ollivon, M. (2000)., Thermal and structural behaviour of milk fat. 1. unstable species of cream. J. Colloid and Interface Sci., 229, 62–71.

    CAS  Google Scholar 

  36. Lumry, R., and Eyring, H (1954). Conformation changes of proteins, J. Phys. Chem., 58, 110–120.

    Article  CAS  Google Scholar 

  37. Marshal, R. T. and Arbuckle, W. S. (1996) Ice cream, International Thomson Publishing, New York

    Google Scholar 

  38. Matsui, N., Material design for hard butter from vegetable fats (1988), in Crystallization and polymorphism of fats and fatty acids, Garti N., and Sato, K. (eds) Marcel Dekker, Inc. New York, pp. 395–421.

    Google Scholar 

  39. McGann, T. C. A., Donelly, W. J., Kearney, R. D., and Buchleim, W. (1980) Composition and size distribution of bovine casein micelles, Biochem., Biophys. Acta, 630, 261–270.

    CAS  Google Scholar 

  40. McKenzie, H. A., and Sawyer, W. H. (1967) Effect of pH on β-lactoglobulin, Nature (London) 214, 1101–1104.

    CAS  Google Scholar 

  41. McClements, D. J., Duncan, S. R, German, J. B., Simoneau, C. and Kinsella, J. E (1993) Droplet size and emulsifier type affect crystallization and melting of hydrocarbon-in-water emulsions, J. Food Sci., 58, 1148–1151.

    CAS  Google Scholar 

  42. Morr, C. V., E. Y. W. Ha. (1993) Whey protein concentrates and isolates: processing and functional properties, CRC Crit. Rev. Food Sci. Nutr., 33, 431–476.

    CAS  Google Scholar 

  43. Pace, C. N., Hirley, B. A., McNutt, M., Gajiwala, K. (1996) Forces contributing to the conformational stability of proteins, FASEB J., 10, 75–83.

    CAS  Google Scholar 

  44. Park, K. H. and Lund, D. B. (1984) Calorimetric study of thermal denaturation of β-lactoglobulin. J. Dairy Sci., 67, 1699–1706.

    CAS  Google Scholar 

  45. Paulsson, M., Djemek, P. (1990) Thermal denaturation of whey proteins in mixture with caseins studied by differential scanning calorimetry, J. Dairy Sci., 73, 590–600.

    CAS  Google Scholar 

  46. Pelan, B. M. C., Watts, K. M., Campbell, I. J., Lips, A. (1997) The stability of aerated milk protein emulsions in the presence of small molecule surfactants, J. Dairy Sci., 80, 2631–2638.

    CAS  Google Scholar 

  47. Philipps, L. W. (1964) Heterogeneous and homogeneous nucleation in supercooled triglycerides and n-paraffins, Trans Faraday Soc., 60, 1873–1883.

    Google Scholar 

  48. Privalov, P. L. (1979) Stability of proteins. Small globular proteins, Adv. Protein Chem., 33, 167–241.

    CAS  Google Scholar 

  49. Privalov, P. L., and Potekin, S. A (1996) Scanning calorimetry in studying temperature-induced changes in proteins, Methods Enzymol., 131, 4–51.

    Google Scholar 

  50. Raemi, A., Lambelet, Pierre, and Garti, N. (2001) Thermal behaviour of foods and food constituents, in Thermal behaviour of dispersed systems, Garti N. (ed), Marcel Dekker, Inc., New York. pp. 477–505.

    Google Scholar 

  51. Relkin, P., Sourdet, S., and Fosseux, P-Y. (2003) Fat crystallization in complex food emulsions. Effects of adsorbed milk proteins and of a whipping process, J. Therm. Anal. Cal., 71, 187–195.

    Article  CAS  Google Scholar 

  52. Relkin, P. (2002) Potentialité de ľanalyse calorimétrique différentielle pour la caractérisation de ľétat de dénaturation de proteines du lactosérum, Ann Fals. Exp. Chim., 559, 189–197.

    Google Scholar 

  53. Relkin, P., (1996) Thermal unfolding of β-lactoglobulin, α-lactalbumin and bovine serum albumin. A thermodynamical approach, Crit. Rev. Food Sci. Nutr., 36, 565–601.

    CAS  Google Scholar 

  54. Relkin, P, Meylheuc, T., Launay, B. and Raynal, K. (1998), Heat-induced gelation of globular protein mixtures. A DSC and a SEM study, J. Therm. Anal., 51, 747–755.

    CAS  Google Scholar 

  55. Relkin, P. and Launay, B. (1991), On the partial revers ibility of β-lactoglobulin heat denaturation, J. Therm. Anal., 37, 1887–1895.

    CAS  Google Scholar 

  56. Ruegg, M. P., Morr, U., Blanc, B.(1997) Acalorime trystudy of the thermal denaturation of whey proteins in simulated milk ultrafiltrate, J. Dairy Res., 44, 509–520.

    Google Scholar 

  57. Rowland, S. J. (1933) The heat denaturation of albumin and globulin in milk, J. Dairy Res., 5, 46–53.

    CAS  Google Scholar 

  58. Roos, Y. H. (1995) Phase tran sitions in foods, Academin Press, Inc., Lon don

    Google Scholar 

  59. Sanchez-Ruiz J. M (1992) Theoretical analysis of Lumry-Eyring models in differential scanning calorimetry, Biophys. J., 61, 921–935.

    CAS  Google Scholar 

  60. Schäffer, B., Lőrinczy, D., and Szakály (1996), DSC and EPR in vestigation o the effect of fat crystallization on the consistency of butter, J. Therm. Anal., 47, 515–524.

    Google Scholar 

  61. Schiraldi, A., Piazza L., Fessas, D., Riva, M. (1999) Thermal Analysis in foods and Food Processes, in Handbook of thermal analysis and calorimetry, Vol 4, Patrick Gallagher (Ed) Elsevier Sci., Amsterdam, p. 829–921.

    Google Scholar 

  62. Skoda, W. and van den Tempel, M., (1963). Crystallization of emulsified triglycerides, J. Colloid Sci., 18, 568–584.

    Article  CAS  Google Scholar 

  63. Sourdet S., Relkin, P., Aubry, V. and Fosseux, P-Y. (2002). Composition of fat protein layer in complex food emulsions at various weight ra tios of ca sein-to-whey proteins, Lait, 82, 567–578.

    Article  CAS  Google Scholar 

  64. Sourdet, S., Relkin, P., and Cesar, B. (2003) Effects of milk protein type and pre-heating on physical stability of whipped and frozen emulsions, Colloids and Sur faces B, (in press).

    Google Scholar 

  65. Sturtevant, J. M. (1987) Biochemical applications of differential scanning calorimetry, Ann. Rev. Phys. Chem., 38, 463–488.

    Article  CAS  Google Scholar 

  66. Walstra, P (1988)., The role of proteins in the stabilization of emulsions, in: Phillips G.O., Wedlock D. J., Williams P. A., [eds] Gums and stabilisers for the food industry 4, IRL Press, Oxford. pp. 323–336.

    Google Scholar 

  67. Walstra, P., Emulsion formation (1983) in Encyclopedia of emulsion technology, 1. Basic Theory, Becher P., [ed], Marcel Dekker Inc., New York. USA, pp. 57–127.

    Google Scholar 

  68. Walstra, P. and van Beresteyn, E. C. H. (1975). Crystallization of milk fat in the emulsified state, Neth. Milk Dairy J., 29, 3565.

    Google Scholar 

  69. Wright, D. J., (1984) Thermoanalatycal methods in food research, in Biophysical methods in food research, H. W.-S. Chan (ed), Blackwell Scientific Publications, Oxford, p. 1–36.

    Google Scholar 

  70. Zhao, J. and. Reid, D. S. (1994) Thermal studies on the crystallization kinetics of triglycerides and milk fat by DSC, Thermochim. Acta, 246, 405–416.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Relkin, P. (2004). Using DSC for monitoring protein conformation stability and effects on fat droplets crystallinity in complex food emulsions. In: Lörinczy, D. (eds) The Nature of Biological Systems as Revealed by Thermal Methods. Hot Topics in Thermal Analysis and Calorimetry, vol 5. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2219-0_5

Download citation

Publish with us

Policies and ethics