Skip to main content

Thymic Accessory Cells, Including Dendritic Type Antigen Presenting Cells, within the Mammalian Thymic Microenvironment

  • Chapter
Immunological Aspects of Neoplasia — The Role of the Thymus

Part of the book series: Cancer Growth and Progression ((CAGP,volume 17))

  • 108 Accesses

Abstract

During mammalian ontogenesis, the thymic “pure” endodermal epithelial anlage develops and differentiates into a complex cellular microenvironment. Beginning the 7–8th week of intrauterine development, thymic epithelial cells chemotactically regulate (induce) numerous waves of migration of stem cells into the thymus, including the CD34+, yolk sac-derived, committed hematopoietic stem cells. In vitro experiments have established that CD34+ CD38dim human thymocytes differentiate into T lymphocytes when co-cultured with mouse fetal thymic organs. Hematopoietic stem cells for myeloid and thymic stromal dendritic cells (DCs) are present within the minute population of CD34+ progenitors within the mammalian thymus. The common myeloid, DC, natural killer (NK) and T lymphocyte progenitors have been also identified within the CD34+ stem cell population in the human thymus. Interactions between the endocrine and immune systems have been reported in various regions of the mammalian body including the anterior pituitary (AP), the skin, and the central (thymus) and peripheral lymphatic system. The network of bone marrow derived DCs is a part of the reticuloendothelial system (RES) and DCs represent the cellular mediators of these regulatory endocrine-immune interactions. Folliculo-stellate cells (FSC) in the AP, Langerhans cells (LCs) in the skin and lymphatic system, “veile” cells, lympho-dendritic and interdigitating cells (IDCs) in a number of tissues comprising the lymphatic system are the cell types of the DC meshwork of “professional” antigen presenting cells (APCs). Most of these cells express the immunocytochemical markers S-100, CD1, CD45, CD54, F418, MHC class I and II antigens, Fc and complement receptors. FSCs are non-hormone-secreting cells which communicate directly with hormone producing cells, a form of neuro-endocrine-immune regulation. As a result, an attenuation of secretory responses follows stimulation of these cells. FSCs are also the cells in the AP producing IL-6, and they have also been identified as the interferon-γ responsive elements. FSCs also express lymphatic DC markers, such as DC specific aminopeptidase, leucyl-β-naphthylaminidase, non-specific esterase, MHC class I and II molecules and various other lymphatic immunological determinants [platelet derived growth factor-α chain (PDGF-α chain), CD13, CD14 and L25 antigen]. There is strong evidence that such DCs in the AP, and similar ones in the developing thymus and peripheral lymphatic tissue are the components of a powerful “professional” antigen presenting DC network. These APCs contain a specialized late endocytic compartment, MIIC (MHC class II-enriched compartment), that harbors newly synthesized MHC class II antigens en route to the cell membrane. The limiting membrane of MIIC can fuse directly with the cell membrane, resulting in release of newly secreted intracellular MHC class II antigen containing vesicles (exosomes). DCs possess the ability to present foreign peptides complexed with the MHC molecules expressed on their surfaces to naive and resting T cells. There are a number of “molecular couples” that influence DC and T lymphocyte interaction during antigen presentation: CD11/CD18 integrins, intercellular adhesion molecules (ICAMs), lymphocyte function associated antigen 3 (LFA-3), CD40, CD80/B7-1, CD86/B7-2, and heat-stable antigen. The “molecular couples” are involved in adhesive or costimulatory regulations, mediating an effective binding of DCs to T lymphocytes and the stimulation of specific intercellular communications. DCs also provide all of the known co-stimulatory signals required for activation of unprimed T lymphocytes. It has been defined that DCs initiate several immune responses, such as the sensitization of MHC-restricted T lymphocytes, resistance to infections and neoplasms, rejection of organ transplants, and the formation of T-dependent antibodies. In addition, DCs and specialized epithelial tissue structures (such as “the nursing” thymic epithelial cells — TNCs) may also be involved in direct, cryptocrine-type cell to cell interactions with the epithelial cells of the thymus. TNCs regulate the development of immature thymocytes into immunocompetent T lymphocytes by emperipolesis, a highly specialized form of cell-cell interaction in which immature thymocytes are engulfed by large thymic RE cells. TNCs in vitro are capable to rescue an early subset of CD4+ CD8+ thymocytes from apoptosis at 32°C, the temperature at which binding and internalization were identified. This thymocyte subpopulation later matured to a characteristic IP at the double positive stage of T lymphocyte differentiation that is indicative of positive selection

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hoefsmit EC, Duijvestijn AM, Kamperdijk EW: Relation between Langerhans cells, veiled cells, and interdigitating cells. Immunobiology 161: 255–265, 1982.

    PubMed  CAS  Google Scholar 

  2. Becker Y: Anticancer role of dendritic cells (DC) in human and experimental cancers — a review. Anticancer Res 12: 511–520, 1992.

    PubMed  CAS  Google Scholar 

  3. Neefjes JJ, Ploegh HL: Intracellular transport of MHC class II molecules. Immunol Today 13: 179–184, 1992.

    Article  PubMed  CAS  Google Scholar 

  4. Roake JA, Austyn JM: The role of dendritic cells and T cell activation in allograft rejection. Exp Nephrol 1: 90–101, 1993.

    PubMed  CAS  Google Scholar 

  5. Austyn JM, Hankins DF, Larsen CP, Morris PJ, Rao AS, Roake JA: Isolation and characterization of dendritic cells from mouse heart and kidney. J Immunol 152: 2401–2410, 1994.

    PubMed  CAS  Google Scholar 

  6. Sprent J: Antigen-presenting cells. Professionals and amateurs. Current Biology 5: 1095–1097, 1995.

    Article  PubMed  CAS  Google Scholar 

  7. Tambur AR, Gebel HM: Alloantigen processing and presentation. J Heart & Lung Transpl 14: 1031–1037, 1995.

    CAS  Google Scholar 

  8. Finkelman FD, Lees A, Birnbaum R, Gause WC, Morris SC: Dendritic cells can present antigen in vivo in a tolerogenic or immunogenic fashion. J Immunol 157: 1406–1414, 1996.

    PubMed  CAS  Google Scholar 

  9. Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief CJ, Geuze HJ: B lymphocytes secrete antigen-presenting vesicles. J Exp Med 183: 1161–1172, 1996.

    Article  PubMed  CAS  Google Scholar 

  10. Steinman RM, Nussenzweig MC: Dendritic cells: features and functions. Immunol Rev 53: 127–148, 1980.

    Article  PubMed  CAS  Google Scholar 

  11. Steinman RM: The dendritic cell system and its role in immunogenicity. Annual Rev Immunol 9: 271–296, 1991.

    Article  CAS  Google Scholar 

  12. Monaco JJ: Structure and function of genes in the MHC class II region. Curr Opin Immunol 5: 17–20, 1993.

    Article  PubMed  CAS  Google Scholar 

  13. Neefjes JJ, Momburg F: Cell biology of antigen presentation. Curr Opin Immunol 5: 27–34, 1993.

    Article  PubMed  CAS  Google Scholar 

  14. Germain RN: MHC-dependent antigen processing and peptide presentation: providing ligands for T lymphocyte activation. Cell 76: 287–299, 1994.

    Article  PubMed  CAS  Google Scholar 

  15. Ossevoort MA, Kleijmeer MJ, Nijman HW, Geuze HJ, Kast WM, Melief CJM: Functional and ultrastructural aspects of antigen processing by dendritic cells. Adv Exp Med Biol 378: 227–231, 1995.

    PubMed  CAS  Google Scholar 

  16. Lutz MB, Assmann CU, Girolomoni G, Ricciardi-Castagnoli P: Different cytokines regulate antigen uptake and presentation of a precursor dendritic cell line. Eur J Immunol 26: 586–594, 1996.

    Article  PubMed  CAS  Google Scholar 

  17. Salmon-Ehr V, Gillery P, Kalis B, Banchhereau J, Maquart FX: Ľinterleukine-4: du lymphocyte B au fibroblaste. Pathol Biol 42: 262–268, 1994.

    PubMed  CAS  Google Scholar 

  18. Bednar B: Dendritic resident cells and their immunohistologic determination. Ceskoslov Patologie 31: 9–16, 1995.

    CAS  Google Scholar 

  19. Paglia P, Girolomoni G, Robbiati F, Granucci F, Ricciardi-Castagnoli P: Immortalized dendritic cell line fully competent in antigen presentation initiates primary T cell responses in vivo. J Exp Med 178: 1893–1901, 1993.

    Article  PubMed  CAS  Google Scholar 

  20. Lenz A, Heine M, Schuler G, Romani N: Human and murine dermis contain dendritic cells, Isolation by means of a novel method and phenotypical and functional characterization. J Clin Invest 92: 2587–2596, 1993.

    Article  PubMed  CAS  Google Scholar 

  21. Piemonti L, Bernasconi S, Luini W, Trobonjaca Z, Minty A, Allavena P, Mantovani A: IL-13 supports differentiation of dendritic cells from circulating precursors in concert with GM-CSF. Eur Cytokine Network 6: 245–252, 1995.

    CAS  Google Scholar 

  22. Barratt-Boyes SM, Henderson RA, Finn OJ: Chimpanzee dendritic cells with potent immunostimulatory function can be propagated from peripheral blood. Immunology 87: 528–534, 1996.

    Article  PubMed  CAS  Google Scholar 

  23. Hanada K, Tsunoda R, Hamada H: GM-CSF-induced in vivo expansion of splenic dendritic cells and their strong costimulation activity. J Leukocyte Biol 60: 181–190, 1996.

    PubMed  CAS  Google Scholar 

  24. Caux C, Vanbervliet B, Massacrier C, Dezutter-Dambuyant C, de Saint-Vis B, Jacquet C, Yoneda K, Imamura S, Schmitt D, Banchereau J: CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to GM-CSF and TNF α. J Exp Med 184: 695–706, 1996.

    Article  PubMed  CAS  Google Scholar 

  25. Hochrein H, Jahrling F, Kreyschh HG, Sutter A: Immunophenotypical and functional characterization of bone marrow derived dendritic cells. Adv Exp Med Biol 378: 61–63, 1995.

    PubMed  CAS  Google Scholar 

  26. Strobl H, Riedl E, Scheinecker C, Bello-Fernandez C, Pickl WF, Rappersberger K, Majdic O, Knapp W: TGF-β 1 promotes in vitro development of dendritic cells from CD34+ hemopoietic progenitors. J Immunol 157: 1499–1507, 1996.

    PubMed  CAS  Google Scholar 

  27. Yamazaki K, Eyden BP: Ultrastructural and immunohistochemical observations on intralobular fibroblasts of human breast, with observations on the CD34 antigen. J Submicr Cytol Pathhol 27: 309–323, 1995.

    CAS  Google Scholar 

  28. Nijman HW, Kleijmeer MJ, Ossevoort MA, Oorschot VM, Vierboom MP, van de Keur M, Kenemans P, Kast WM, Geuze HJ, Melief CJ: Antigen capture and major histocompatibility class II compartments of freshly isolated and cultured human blood dendritic cells. J Exp Med 182: 163–174, 1995.

    Article  PubMed  CAS  Google Scholar 

  29. Davoust J, Banchereau J: Naked antigen-presenting molecules on dendritic cells. Nat Cell Biol 2: E46–E48, 2000.

    Article  PubMed  CAS  Google Scholar 

  30. Cocchia D, Miani N: Immunocytochemical localization of the brain-specific S-100 protein in the pituitary gland of adult rat. J Neurocytol 9: 771–782, 1980.

    Article  PubMed  CAS  Google Scholar 

  31. Baes M, Allaerts W, Denef C: Evidence for functional communication between folliculo-stellate cells and hormone-secreting cells in perfused anterior pituitary cell aggregates. Endocrinology 120: 685–691, 1987.

    PubMed  CAS  Google Scholar 

  32. Vankelecom H, Carmeliet P, van Damme J, Billiau A, Denef C: Production of interleukin-6 by folliculo-stellate cells of the anterior pituitary gland in a histiotypic cell aggregate culture system. Neuroendocrinology 49: 102–106, 1989.

    Article  PubMed  CAS  Google Scholar 

  33. Nakajima T, Yamaguchi H, Takahashi K: S-100 protein in folliculo-stellate cells of the rat of the pituitary anterior lobe. Brain Res 191: 523–531, 1980.

    Article  PubMed  CAS  Google Scholar 

  34. Allaerts W, Denef C: Regulatory activity and topological distribution of folliculo-stellate cells in rat anterior pituitary cell aggregates. Neuroendocrinology 49: 409–418, 1989.

    Article  PubMed  CAS  Google Scholar 

  35. Allaerts W, Jeucken PHM, Hofland LJ, Drexhage HA: Morphological, immunohistochemical and functional homologies between pituitary folliculo-stellate cells and lymphoid dendritic cells. Acta Endocrinol 125: 92–97, 1991.

    PubMed  Google Scholar 

  36. Carmeliet P, Vankelecom H, van Damme J, Billiau A, Denef C: Release of interleukin-6 from anterior pituitary cell aggregates: developmental pattern and modulation by glucocorticoids and forskolin. Neuroendocrinology 53: 29–34, 1991.

    Article  PubMed  CAS  Google Scholar 

  37. Allaerts W, Jeucken PHM, Bosman FT, Drexhage HA: Relationship between dendritic cells and folliculo-stellate cells in the pituitary: immunohistochemical comparison between mouse, rat and human pituitaries. In: Dendritic Cells in Fundamental and Clinical Immunology (Kamperdijk et al, eds), Plenum Press, New York, 1993, pp 637–642.

    Google Scholar 

  38. Takahashi K, Yamaguchi H, Ishizeki J, Nakajima T, Nakazato Y: Immunohistochemical and immunoelectron microscopic localization of S-100 protein in the interdigitating reticulum cells of the human lymph node. Virchows Arch [Cell Pathol] 37: 125–135, 1981.

    Article  CAS  Google Scholar 

  39. Allaerts W, Jeucken PH, Bosman FT, Drexhage HA: Relationship between dendritic cells and folliculo-stellate cells in the pituitary: immunohistochemical comparison between mouse, rat and human pituitaries. Adv Exp Med Biol 329: 637–642, 1993.

    PubMed  CAS  Google Scholar 

  40. Jones TH, Kennedy RL: Cytokines and hypothalamic-pituitary function. Cytokine 5: 531–538, 1993.

    Article  PubMed  CAS  Google Scholar 

  41. Gaudecker B von, Müller-Hermelink HK: Ontogeny and organization of the stationary non-lymphoid cells in the human thymus. Cell Tissue Res 207: 287–306, 1980.

    Article  Google Scholar 

  42. Ardavin C, Martinez del Hoyo G, Martin P, Anjuère, F, Arias CF, Marin AR, Ruiz S, Parrillas V, Hernandez H: Origin and differentiation of dendritic cells. Trends in Immunology 22: 691–700, 2001.

    Article  PubMed  CAS  Google Scholar 

  43. Ardavin C, Wu L, Li C-L, Shortman K: Thymic dendritic cells and T cells develop simultaneously in the thymus from a common precursor population. Nature 362: 761–763, 1993.

    Article  PubMed  CAS  Google Scholar 

  44. Haynes BF, Heinly CS: Early human T cell development: analysis of the human thymus at the time of initial entry of hematopoietic stem cells into the fetal thymic microenvironment. J Exp Med 181: 1445–1458, 1995.

    Article  PubMed  CAS  Google Scholar 

  45. Wu L, Vremec D, Ardavin C, Winkel K, Suss G, Georgiou H, Maraskovsky E, Cook W, Shortman K: Mouse thymus dendritic cells: kinetics of development and changes in surface markers during maturation. Eur J Immunol 25: 418–425, 1995.

    Article  PubMed  CAS  Google Scholar 

  46. Wu L, Li C-L, Shortman K: Thymic dendritic cell precursors: relationshhip to the T lymphocyte lineage and phenotype of the dendritic cell progeny. J Exp Med 184: 903–911, 1996.

    Article  PubMed  CAS  Google Scholar 

  47. Gale RP: Development of the immune system in human fetal liver. Thymus 10: 45–56, 1987.

    PubMed  CAS  Google Scholar 

  48. Lobach DF, Haynes BF: Ontogeny of the human thymus during fetal development. J Clin Immunol 7: 81–97, 1987.

    Article  PubMed  CAS  Google Scholar 

  49. Res P, Martinez-Caceres E, Jaleco AC, Staal F, Noteboom E, Weijer K, Spits H: CD34+CD38dim cells in the human thymus can differentiate into T, natural killer, and dendritic cells but are distinct from pluripotent stem cells. Blood 87: 5196–5206, 1996.

    PubMed  CAS  Google Scholar 

  50. Craig W, Kay R, Cutler RL, Lansdorp P: Expression of Thy-1 on human hematopoietic progenitor cells. J Exp Med 177: 1331–1342, 1993.

    Article  PubMed  CAS  Google Scholar 

  51. Merkenschlager M, Fisher AG: CD45 isoform switching precedes the activation-driven death of human thymocytes by apoptosis. Int Immunol 3: 1–7, 1991.

    Article  PubMed  CAS  Google Scholar 

  52. Yeoman H, Gress RE, Bare CE, Leary AG, Boyse EA, Bard J, Schultz LD, Harris DT, DeLuca D: Human bone marrow and umbilical cord blood cells generate CD4+ and CD8+ single-positive T cells in murine fetal thymus organ culture. Proc Natl Acad Sci USA 90: 10778–10782, 1993.

    Article  PubMed  CAS  Google Scholar 

  53. Plum J, De Smedt M, Defresne M-P, Leclercq G, Vanderkerckhove B: Human CD34+ fetal liver stem cells differentiate to T cells in a mouse thymic microenvironment. Blood 84: 1587–1593, 1994.

    PubMed  CAS  Google Scholar 

  54. Kurtzberg J, Denning SM, Nycum LM, Singer KH, Haynes BF: Immature human thymocytes can be driven to differentiate into nonlymphoid lineages by cytokines from thymic epithelial cells. Proc Natl Acad Sci USA 86: 7575–7579, 1989.

    Article  PubMed  CAS  Google Scholar 

  55. Fairchild PF, Austyn JM: Thymic dendritic cells: Phenotype and function. Int Rev Immunol 6: 187–196, 1990.

    Article  PubMed  CAS  Google Scholar 

  56. Barcena A, Galy AHM, Punnonen JJ, Muench MO, Schols D, Roncarola MG, de Vries JE, Spits H: Lymphoid and myeloid differentiation of fetal liver CD34+ lineage-cells in human thymic organ culture. J Exp Med 180: 123–132, 1994.

    Article  PubMed  CAS  Google Scholar 

  57. Marquez C, Trigueros C, Fernandez E, Toribio ML: The development of T and non-T cell lineages from CD34+ human thymic precursors can be traced by the differential expression of CD44. J Exp Med 181: 475–483, 1995.

    Article  PubMed  CAS  Google Scholar 

  58. Deans JP, Wilkins JA, Caixia S, Pruski E, Pilarski LM: Prolonged expression of high molecular mass CD45RA isoform during the differentiation of human progenitor thymocytes to CD3+ cells in vitro. J Immunol 147: 4060–4068, 1991.

    PubMed  CAS  Google Scholar 

  59. Sanchez M-JJ, Muench MO, Roncarolo MG, Lanier L, Phillips JH: Identification of a common T/natural killer cell progenitor in human fetal thymus. J Exp Med 180: 569–576, 1994.

    Article  PubMed  CAS  Google Scholar 

  60. Fink PJ, Bevan MJ: H-2 antigens of the thymus determine lymphocyte specificity. J Exp Med 148: 766–775, 1978.

    Article  PubMed  CAS  Google Scholar 

  61. Bevan MJ, Fink PJ: The influence of thymus H-2 antigens on the specificity of maturing killer and helper cells. Immunol Rev 42: 3–19, 1978.

    Article  PubMed  CAS  Google Scholar 

  62. Zinkernagel RM, Callahan GN, Klein J, Dennert G: Cytotoxic T cells learn specificity for self H-2 during differentiation in the thymus. Nature 271: 251–253, 1978.

    Article  PubMed  CAS  Google Scholar 

  63. Zinkernagel RM, Callahan GN, Althage A, Cooper S, Klein PA, Klein J: On the thymus in the differentiation of “H-2 self-recognition” by T cells: evidence for dual recognition? J Exp Med 147: 882–896, 1978.

    Article  PubMed  CAS  Google Scholar 

  64. Beller DI, Unanue ER: Ia antigens and antigen-presenting function of thymic macrophages. J Immunol 124: 1433–1440, 1980.

    PubMed  CAS  Google Scholar 

  65. Oliver PD, LeDouarin NM: Avian thymic accessory cells. J Immunol 132: 1748–1755, 1984.

    PubMed  CAS  Google Scholar 

  66. Beller DI, Kiely JM, Unanue ER: Regulation of macrophage populations. I. Preferential induction of Ia-rich peritoneal exudates by immunologic stimuli. J Immunol 124: 1426–1432, 1980.

    PubMed  CAS  Google Scholar 

  67. Ewert DL, Gilmour DG, Briles WE, Cooper MD: Genetics of Ia-like alloantigens in chickens and linkage with B major histocompatibility complex. Immunogenetics 10: 169–174, 1980.

    Article  PubMed  CAS  Google Scholar 

  68. Ewert DL, Munchus MS, Chen CL, Cooper MD: Analysis of structural properties and cellular distribution of avian Ia antigen by using monoclonal antibody to monomorphic determinants. J Immunol 132: 2524–2530, 1984.

    PubMed  CAS  Google Scholar 

  69. Brekelmans P, van Ewijk W: Phenotypic characterization of murine thymic microenvironments. Sem Immunol 2: 13–24, 1990.

    CAS  Google Scholar 

  70. Kappler JW, Roehm N, Marrack P: T cell tolerance by clonal elimination in the thymus. Cell 49: 273–280, 1987.

    Article  PubMed  CAS  Google Scholar 

  71. MacDonald HR, Lees RK, Schneider R, Zinkernagel RM, Hengartner H: Positive selection of CD4+ thymocytes controlled by MHC class II gene products. Nature 336: 471–473, 1988.

    Article  PubMed  CAS  Google Scholar 

  72. Kisielow P, Teh HS, Bluthmann H, von Boehmer H: Positive selection of antigen-specific T cells in thymus by restricting MHC molecules. Nature 335: 730–733, 1988.

    Article  PubMed  CAS  Google Scholar 

  73. Kisielow P, Bluthmann H, Staerz UD, Steinmetz M, von Boehmer H: Tolerance in T-cell-receptor transgenic mice involves deletion of nonmature CD4+8+ thymocytes. Nature 333: 742–746, 1988.

    Article  PubMed  CAS  Google Scholar 

  74. Kisielow P, von Boehmer H: Negative and positive selection of immature thymocytes: timing and the role of the ligand for αβ T cell receptor. Sem Immunol 2: 35–44, 1990.

    CAS  Google Scholar 

  75. Le Bouteiller P, Lenfant F: Antigen-presenting function(s) of the non-classical HLA-E,-F and-G class I molecules: the beginning of a story. Res Immunol 147: 301–313, 1996.

    Article  PubMed  CAS  Google Scholar 

  76. Grey HM, Buus S, Colon S, Miles C, Sette A: Structural requirements and biological significance of interactions between peptides and the major histocompatibility complex. Phil Trans Royal Soc London. Series B: Biol Sci 323: 545–552, 1989.

    Article  CAS  Google Scholar 

  77. Steinman RM, Cohn ZA: Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med 137: 1142–1162, 1973.

    Article  PubMed  CAS  Google Scholar 

  78. Markgraf R, von Gaudecker B, Müller-Hermelink HK: The development of the human lymph node. Cell Tissue Res 225: 387–413, 1982.

    Article  PubMed  CAS  Google Scholar 

  79. Witmer MD, Steinman RM: The anatomy of peripheral lymphoid organs with emphasis on accessory cells: light-microscopic immunocytochemical studies of mouse spleen, lymph node and Peyer’s patch. Am J Anat 170: 4655–4681, 1984.

    Article  Google Scholar 

  80. Kaiserling E, Stein H, Müller-Hermelink HK: Interdigitating reticulum cells in the human thymus. Cell Tiss Res 155: 47–55, 1974.

    Article  CAS  Google Scholar 

  81. Crivellato E, Mallardi F, Basa M, Zweyer M: Osmium-zinc iodide reacts with interdigitating cells in the mouse lymph nodes and spleen. Z mikroskop-anat Forsch 104: 476–484, 1990.

    CAS  Google Scholar 

  82. Crivellato E, Baldini G, Basa M, Fusaroli P: The three-dimensional structure of interdigitating cells. Italian J Anat Embryol 98: 243–258, 1993.

    CAS  Google Scholar 

  83. Kelly RH, Balfour BM, Armstrong JA, Griffiths S: Functional anatomy of lymph nodes. II. Peripheral lymph-borne mononuclear cells. Anat Rec 190: 5–22, 1978.

    Article  PubMed  CAS  Google Scholar 

  84. Kamperdijk EWA, de Leeuw JHS, Hoefsmit ECM: Lymph node macrophages and reticulum cells in the immune response; the secondary response to paratyphoid vaccine. Cell Tissue Res 227: 277–290, 1982.

    Article  PubMed  CAS  Google Scholar 

  85. Fossum S, Vaalard JL: The architecture of rat lymph nodes. I. Combined light and electronmicroscopy of lymph node cell types. Anat Embryol 167: 229–246, 1983.

    Article  PubMed  CAS  Google Scholar 

  86. Hart DNJ, Fabre JW: Demonstration and characterization of Ia-positive dendritic cells in the interstitial connective tissue of rat heart and other tissues, but not brain. J Exp Med 154: 347–361, 1981.

    Article  PubMed  CAS  Google Scholar 

  87. Hart DNJ, McKenzie JL: Interstitial dendritic cells. Int Rev Immunol 6: 128–149, 1990.

    Article  Google Scholar 

  88. Klug H, Mager B: Ultrastructure and function of interdigitating cells in the guinea pig thymus. Acta Morph Acad Sci Hung 27: 11–9, 1979.

    CAS  Google Scholar 

  89. Klug H: Elektronenmikroskopische Untersuchungen zur Phagocytose strahlengeschédigter Lymphozyten im Thymus von Ratten. Z Zellforsch 68: 43–56, 1965.

    Article  PubMed  CAS  Google Scholar 

  90. Duijvestijn AM, Kamperdijk EW: Birbeck granules in interdigitating cells of thymus and lymph node. Cell Biol Int Rep 6: 655, 1982.

    Article  PubMed  CAS  Google Scholar 

  91. Duijvestijn AM, Sminia T, Kohler YG, Janse EM, Hoefsmit EC: Rat thymus micro-environment: an ultrastructural and functional characterization. Adv Exp Med Biol 149: 441–446, 1982.

    PubMed  CAS  Google Scholar 

  92. Duijvestijn AM, Kohler YG, Hoefsmit EC: Interdigitating cells and macrophages in the acute involuting rat thymus. An electron-microscopic study on phagocytic activity and population development. Cell Tiss Res 224: 291–301, 1982.

    Article  CAS  Google Scholar 

  93. Miyazawa T, Sato C, Kojima K: Thymic phagocytosis and reduction in the negative surface charge of thymocytes after X irradiation. Radiat Res 79: 622–629, 1979.

    Article  PubMed  CAS  Google Scholar 

  94. Higley HR, O’Morchoe CC: Morphometric analysis of thymic medullary non-lymphoid cell changes during postnatal development. Dev Comp Immunol 8: 711–719, 1984.

    Article  PubMed  CAS  Google Scholar 

  95. Ewijk W van, Verzijden JH, Kwast TH van der, Luijcx-Meijer SW: Reconstitution of the thymus dependent area in the spleen of lethally irradiated mice. A light and electron microscopical study of the T-cell microenvironment. Cell Tiss Res 149: 43–60, 1974.

    Article  Google Scholar 

  96. Heusermann U, Stutte HJ, Müller-Hermelink HK: Interdigitating cells in the white pulp of the human spleen. Cell Tiss Res 153: 415–7, 1974.

    Article  CAS  Google Scholar 

  97. Langerhans P: Uber die Nerven der menschlichen Haut. Virchow’s Arch A (Pathol Anat) 44: 325–338, 1868.

    Google Scholar 

  98. Silberberg I: Apposition of mononuclear cells to Langerhans cells in contact allergic reactions: an ultrastructural study. Acta Dermatol Venereol 53: 1–12, 1973.

    CAS  Google Scholar 

  99. Strunk D, Rappersberger K, Egger C, Strobl H, Kromer E, Elbe A, Maurer D, Stingl G: Generation of human dendritic cells/Langerhans cells from circulating CD34+ hematopoietic progenitor cells. Blood 87: 1292–1302, 1996.

    PubMed  CAS  Google Scholar 

  100. Birbeck MS, Breathnach AS, Everall JD: An electron microscope study of basal melanocytes and high-level clear cells (Langerhans cells) in vitiligo. J Invest Dermatol 37: 51–64, 1961.

    Article  Google Scholar 

  101. Silberberg I, Baer RL, Rosenthal SA; Circulating Langerhans cells in a dermal vessel. Acta Dermato-Venereol 54: 81–85, 1974.

    CAS  Google Scholar 

  102. Silberberg-Sinakin I, Fedorko ME, Baer RL, Rosenthal SA, Berezowsky V, Thorbecke GJ: Langerhans cells: target cells in immune complex reactions. Cell Immunol 32: 400–416, 1977.

    Article  PubMed  CAS  Google Scholar 

  103. Silberberg-Sinakin I, Gigli I, Baer RL, Thorbecke GJ: Langerhans cells: role in contact hypersensitivity and relationship to lymphoid dendritic cells and to macrophages. Immunol Rev 53: 203–232, 1980.

    Article  PubMed  CAS  Google Scholar 

  104. Bucana CD, Munn CG, Song MJ, Dunner K Jr, Kripke ML: Internalization of Ia molecules into Birbeck granule-like structures in murine dendritic cells. J Invest Dermatol 99: 365–373, 1992.

    Article  PubMed  CAS  Google Scholar 

  105. Henkes W, Syha J, Reske K: Nucleotide sequence of rat invariant γ chain cDNA clone pLRγ34.3. Nucleic Acids Res 16: 11822, 1988.

    Article  PubMed  CAS  Google Scholar 

  106. Bakke O, Dobberstein B: MHC class II associated invariant chain contains a sorting signal for endosomal compartments. Cell 63: 707–716, 1990.

    Article  PubMed  CAS  Google Scholar 

  107. Lotteau V, Teyton L, Peleraux A, Nilsson T, Karlsson L, Schmid SL, Quaranta V, Peterson PA: Intracellular transport of class II MHC molecules directed by invariant chain. Nature 348: 600–605, 1990.

    Article  PubMed  CAS  Google Scholar 

  108. Naujokas MF, Morin M, Anderson MS, Peterson M, Miller J: The chondroitin sulfate form of invariant chain can enhance stimulation of T cell responses through interaction with CD44. Cell 74: 257–268, 1993.

    Article  PubMed  CAS  Google Scholar 

  109. Hashimoto K, Tarnowski WM: Some new aspects of the Langerhans cell. Arch Dermatol 97: 450–464, 1968.

    Article  PubMed  CAS  Google Scholar 

  110. Hashimoto K: Langerhans’ cell granule. An endocytotic organelle. Arch Dermatol 104: 148–160, 1971.

    Article  PubMed  CAS  Google Scholar 

  111. Ferreira-Marques J: Systema sensitivum intra-epidermicum. Die Langerhansschen Zellen als Rezeptoren des hellen Schmerzes: Doloriceptores. Arch Dermatol Syph 193: 191–250, 1951.

    Article  CAS  PubMed  Google Scholar 

  112. Niebauer G: Über die interstitiellen Zellen der Haut. Hautarzt 7: 123–126, 1956.

    PubMed  CAS  Google Scholar 

  113. Richter R: Studien zur Neurohistologie der nervösen vegetativen Peripherie der Haut bei verschiedenen chronischen infektiösen Granulomen mit besonderer Berücksichtigung der Langerhansschen Zellen; Tuberkolosen der Haut. Arch Klin Exp Dermatol 202: 466–495, 1956.

    Article  PubMed  CAS  Google Scholar 

  114. Richter R: Studien zur Neurohistologie der nervösen vegetativen Peripherie der Haut bei verschiedenen chronischen infektiösen Granulomen mit besonderer Berücksichtigung der Langerhansschen Zellen; tertiäre Syphilide der Haut. Arch Klin Exp Dermatol 202: 496–508, 1956.

    Article  PubMed  CAS  Google Scholar 

  115. Richter R: Studien zur Neurohistologie der nervösen vegetativen Peripherie der Haut bei verschiedenen chronischen infektiösen Granulomen mit besonderer Berücksichtigung der Langerhansschen Zellen; Leishmaniosis cutis. Arch Klin Exp Dermatol 202: 509–517, 1956.

    Article  PubMed  CAS  Google Scholar 

  116. Richter R: Studien zur Neurohistologie der nervösen vegetativen Peripherie der Haut bei verschiedenen chronischen infektiösen Granulomen mit besonderer Berücksichtigung der Langerhansschen Zellen; Lepra. Arch Klin Exp Dermatol 202: 518–555, 1956.

    Article  PubMed  CAS  Google Scholar 

  117. Niebauer G: Über die Dendritenzellen bei Vitiligo. Dermatologica 130: 317–324, 1965.

    Article  PubMed  CAS  Google Scholar 

  118. Niebauer G, Sekido N: Über die Dendritenzellen der Epidermis. Eine Studie über die Langerhans-Zellen in der normalen und ekzematösen Haut des Meerschweinchens. Arch Klin Exp Dermatol 222: 23–42, 1965.

    Article  PubMed  CAS  Google Scholar 

  119. Masson P: My conception of cellular nevi. Cancer 4: 9–38, 1951.

    Article  PubMed  CAS  Google Scholar 

  120. Billingham RE, Medawar PB: “Desensitization” to skin homografts by injections of donor skin extracts. Ann Surg 137: 444–449, 1953.

    Article  PubMed  CAS  Google Scholar 

  121. Fan J, Hunter R: Langerhans cells and the modified technic of gold impregnation by Ferreira-Marques. J Invest Dermatol 31: 115–121, 1958.

    Article  PubMed  CAS  Google Scholar 

  122. Fan J, Schoenfeld RJ, Hunter R: A study of the epidermal clear cells with special references to their relationship to the cells of Langerhans. J Invest Dermatol 32: 445–450, 1959.

    Article  PubMed  CAS  Google Scholar 

  123. Billingham RE, Silvers WK: Re-investigation of the possible occurrence of maternally induced tolerance in guinea pigs. J Exp Zool 160: 221–224, 1965.

    Article  PubMed  CAS  Google Scholar 

  124. Billingham RE, Silvers WK: Some biological differences between thymocytes and lymphoid cells. Wistar Inst Sympos Monogr 2: 41–51, 1964.

    CAS  Google Scholar 

  125. Schuler G, Steinman RM: Murine epidermal Langerhans cells mature into potent immunostimulatory dendritic cells in vitro. J Exp Med 161: 526–546, 1985.

    Article  PubMed  CAS  Google Scholar 

  126. Witmer-Pack MD, Olivier W, Valinsky J, Schuler G, Steinman RM: Granulocyte/macrophage colony-stimulating factor is essential for the viability and function of cultured murine epidermal Langerhans cells. J Exp Med 166: 1484–1498, 1987.

    Article  PubMed  CAS  Google Scholar 

  127. Olah I, Dunay C, Rohlich P, Toro I: A special type of cells in the medulla of the rat thymus. Acta Biol Acad Sci Hung 19: 97–113, 1968.

    PubMed  CAS  Google Scholar 

  128. Haelst U van: Light and electron microscopic study of the normal and pathological thymus of the rat. I. The normal thymus. Zeitschr Zellforsch Mikroskop Anat 77: 534–553, 1967.

    Article  Google Scholar 

  129. Haelst U van: Light and electron microscopic study of the normal and pathological thymus of the rat. II. The acute thymic involution. Zeitschr Zellforsch Mikroskop Anat 80: 153–182, 1967.

    Article  Google Scholar 

  130. Warchol JB, Brelinska R, Jaroszewski J: Granules of Langerhans cells in the thymus contain gold. Experientia 40: 75–76, 1984.

    Article  PubMed  CAS  Google Scholar 

  131. Zelickson AS: The Langerhans cell. J Invest Dermatol 44: 201–212, 1965.

    PubMed  CAS  Google Scholar 

  132. Breathnach AS, Wyllie LM: Electron microscopy of melanocytes and Langerhans cells in human fetal epidermis at fourteen weeks. J Invest Dermatol 44: 51–60, 1965.

    PubMed  CAS  Google Scholar 

  133. Wolff K: The fine structure of the Langerhans cell granule. J Cell Biol 35: 468–473, 1967.

    Article  PubMed  CAS  Google Scholar 

  134. Wolff K: The Langerhans cell. Curr Prob Dermatol 4: 79–145, 1971.

    Google Scholar 

  135. Kiistala U, Mustakallio KK: Electronmicroscopic evidence of synthetic activity in Langerhans cells of human epidermis. Zeitschr Zellforsch Mikroskop Anat 78: 427–440, 1967.

    Article  CAS  Google Scholar 

  136. Kiistala U, Mustakallio KK: The presence of Langerhans cells in human dermis with special reference to their potential mesenchymal origin. Acta Dermato-Venereol. 48: 115–122, 1968.

    CAS  Google Scholar 

  137. Prunieras M: Interactions between keratinocytes and dendritic cells. J Invest Dermatol 52: 1–17, 1969.

    Google Scholar 

  138. Rowden G: Immuno-electron microscopic studies of surface receptors and antigens of human Langerhans cells. Br J Dermatol 97: 593–608, 1977.

    Article  PubMed  CAS  Google Scholar 

  139. Rowden G, Lewis MG, Sullivan AK: Ia antigen expression on human epidermal Langerhans cells. Nature 268: 247–248, 1977.

    Article  PubMed  CAS  Google Scholar 

  140. Rowden G: Expression of Ia antigens on Langerhans cells in mice, guinea pigs, and man. J Invest Dermatol 75: 22–31, 1980.

    Article  PubMed  CAS  Google Scholar 

  141. Veerman AJ: On the interdigitating cells in the thymus-dependent area of the rat spleen: a relation between the mononuclear phagocyte system and T-lymphocytes. Cell Tiss Res 148: 247–257, 1974.

    Article  CAS  Google Scholar 

  142. Nossal GJ, Abbot A, Mitchell J, Lummus Z: Antigens in immunity. XV. Ultrastructural features of antigen capture in primary and secondary lymphoid follicles. J Exp Med 127: 277–290, 1968.

    Article  PubMed  CAS  Google Scholar 

  143. Steinman RM, Witmer MD: Lymphoid dendritic cells are potent stimulators of the primary mixed leukocyte reaction in mice. Proc Natl Acad Sci USA 75: 5132–5136, 1978.

    Article  PubMed  CAS  Google Scholar 

  144. Berman B, Gigli I: Complement receptors on guinea pig epidermal Langerhans cells. J Immunol 124: 685–690, 1980.

    PubMed  CAS  Google Scholar 

  145. Hammerling GJ, McDevitt HO: Antigen-binding structures on the surface of T lymphocytes. Israel J Med Sci 11: 1331–1341, 1975.

    PubMed  CAS  Google Scholar 

  146. Klein J, Hauptfeld V: Ia antigens: their serology, molecular relationships, and their role in allograft reactions. Transplant Rev 30: 83–100, 1976.

    PubMed  CAS  Google Scholar 

  147. Shreffler DC, David CS: The H-2 major histocompatibility complex and the I immune response region: genetic variation, function, and organization. Adv Immunol 20: 125–195, 1975.

    Article  PubMed  CAS  Google Scholar 

  148. Nagao S, Inaba S, Iijima S: Langerhans cells at the sites of vaccinia virus inoculation. Arch Dermatol Res/Archiv fur Dermatol Forsch 256: 23–31, 1976.

    CAS  Google Scholar 

  149. Strunk D, Rappersberger K, Egger C, Strobl H, Kromer E, Elbe A, Maurer D, Stingl G: Generation of human dendritic cells/Langerhans cells from circulating CD34+ hematopoietic progenitor cells. Blood 87: 1292–1302, 1996.

    PubMed  CAS  Google Scholar 

  150. Katz SI, Tamaki K, Sachs DH: Epidermal Langerhans cells are derived from cells originating in bone marrow. Nature 282: 324–326, 1979.

    Article  PubMed  CAS  Google Scholar 

  151. Frelinger JG, Hood L, Hill S, Frelinger JA: Mouse epidermal Ia molecules have a bone marrow origin. Nature 282: 321–323, 1979.

    Article  PubMed  CAS  Google Scholar 

  152. Rausch E, Kaiserling E, Goos M: Langerhans cells and interdigitating reticulum cells in the thymus-dependent region in human dermatopathic lymphadenitis. Virchows Archiv — B Cell Pathol 25: 327–343, 1977.

    CAS  Google Scholar 

  153. Hoffman-Fezer G, Rodt H, Thierfelder S: Immunohistochemical identification of T-and B-lymphocytes delineated by the unlabeled antibody enzyme method. II. Anatomical distribution of T-and B-cells in lymphoid organs of nude mice. Beitr Pathol 161: 17–26, 1977.

    Google Scholar 

  154. Hoffman-Fezer G, Rodt H, Götze D, Thierfelder S: Anatomical distribution of T and B lymphocytes identified by immunohistochemistry in the chicken spleen. Int Arch Allergy Appl Immunol 55: 86–95, 1977.

    Google Scholar 

  155. Wekerle H, Ketelsen U-P, Ernst M: Thymic nurse cells. Lymphoepithelial cell complexes in murine thymuses: morphological and serological characterization. J Exp Med 151: 925–944, 1980.

    Article  PubMed  CAS  Google Scholar 

  156. Ritter MA, Sauvage CA, Cotmore SF: The human thymus microenvironment: in vivo identification of thymic nurse cells and other antigenically-distinct subpopulations of epithelial cells. Immunology 44: 439–446, 1981.

    PubMed  CAS  Google Scholar 

  157. Kyewski BA, Kaplan H.S: Lymphoepithelial interactions in the mouse thymus: phenotypic and kinetic studies on thymic nurse cells. J Immunol 128: 2287–2294, 1982.

    PubMed  CAS  Google Scholar 

  158. Janckila AJ, Yam LT, Li C-Y: Immunoalkaline phosphatase cytochemistry. Am J Clin Pathol 84: 476–480, 1985.

    PubMed  CAS  Google Scholar 

  159. Cattoretti G Berti E Schiro R D’ Amato L Valeggio C Rilke F Improved avidin-biotin-peroxidase complex ABC staining. Histol J 20 75–80 1988.

    Article  CAS  Google Scholar 

  160. Bodey B, Zeltzer PM, Saldivar V, Kemshead J: Immunophenotyping of childhood astrocytomas with a library of monoclonal antibodies. Int J Cancer 45: 1079–1087, 1990.

    Article  PubMed  CAS  Google Scholar 

  161. Yam LT, Janckila AJ, Epremian BE, Li C-Y: Diagnostic significance of levamisole-resistant alkaline phosphatase in cytochemistry and immunocytochemistry. Am J Clin Pathol 91: 31–36, 1989.

    PubMed  CAS  Google Scholar 

  162. Strasburger CJ, Amir-Zaltsman Y, Kohen F: The avidin-biotin reaction as an universal amplification system in immunoassays. Prog Clin Biol Res 285: 79–100, 1988.

    PubMed  CAS  Google Scholar 

  163. Wilchek M, Bayer EA: Introduction to avidin-biotin technology. Methods Enzymol 184: 5–13, 1990.

    Article  PubMed  CAS  Google Scholar 

  164. Duhamel RC, Whitehead JS: Prevention of nonspecific binding of avidin. Methods Enzymol 184: 201–207, 1990.

    Article  PubMed  CAS  Google Scholar 

  165. Diamandis EP, Christopoulos TK: The biotin-(strept) avidin system: principles and applications in biotechnology. Clin Chem 37: 625–636, 1991.

    PubMed  CAS  Google Scholar 

  166. Hsu SM, Raine L, Fanger H: Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison of ABC and unlabeled antibody (PAP) procedure. J Histochem Cytochem 29: 577–581, 1981.

    PubMed  CAS  Google Scholar 

  167. Battifora H: The multitumor (sausage) tissue block: novel method for immunohistochemical antibody testing. Lab Invest 55: 244–248, 1986.

    PubMed  CAS  Google Scholar 

  168. Battifora H, Mehta P: The checkerboard tissue block. An improved multitissue control block. Lab Invest 63: 722–724, 1990.

    PubMed  CAS  Google Scholar 

  169. Bodey B, Bodey B Jr, Kaiser HE: Cell culture observations of Postnatal Thymic Epithelium: An In Vitro Model for Growth and Humoral Influence on Intrathymic T Lymphocyte Maturation. IN VIVO 10: 515–526, 1996.

    PubMed  CAS  Google Scholar 

  170. Beller DI, Unanue ER: Thymic maturation in vitro by a secretory product from macrophages. J Immunol 118: 1780–1787, 1977.

    PubMed  CAS  Google Scholar 

  171. Kostowiecki M: The thymic macrophages. Z Mikr-Anat Forsch 69: 585–614, 1963.

    PubMed  CAS  Google Scholar 

  172. Herxheimer G: Fettinfiltration des Thymus. Verh Dtsch Path Ges 6 Tagg, 1903–1904.

    Google Scholar 

  173. Holmström R: Über das Vorkommen von Fett und fettähnlichen Substanzen im Thymusparenchym. Arch Mikrosk Anat 77: 323–345, 1911.

    Google Scholar 

  174. Barbano C: Die normale Involution der Thymus. Virchows Arch 207: 1–27, 1912.

    Article  Google Scholar 

  175. Hart C: Thymusstudien. I. Über das Auftreten von Fett in der Thymus. Virchows Arch 207: 27–55, 1912.

    Article  Google Scholar 

  176. Fulci F: Die Natur der Thymusdrüse nach Untersuchungen über ihre Regenerationsfähigkeit bei Säugetieren. Deutsch Med Wschenschr 39: 1776–1780, 1913.

    Google Scholar 

  177. Hammar JA, Lagergren KA: Beiträge zur Konstitutionsanatomie 5. Verhalten der Thymus bei akuten Infektionen: mikroskopische Analyse der Thymus in Fällen von Diptheria. Ztschr Angew Anat Konstitutionsl 4: 314–398, 1918.

    Google Scholar 

  178. Hammar JA: Beiträge zur Konstitutionsanatomie 7. Mikroskopische Analyse der Thymus in einigen Fällen von Lues congenita. Beitr Path Anat Allg Path 66: 37–91, 195–258, 1919.

    Google Scholar 

  179. Day AJ: Lipid metabolism by macrophages and its relationship to atherosclerosis. Adv Lipid Res 5: 185–207, 1967.

    PubMed  CAS  Google Scholar 

  180. Hammar JA: Zur Frage der Histogenese der Thymusdrüse. Zbl Path 33: 505–513, 1923.

    Google Scholar 

  181. Hammar JA: Die Menschenthymus in Gesundheit und Krankheit: Ergebnisse der numerischen Analyse von mehr als tausend menschlichen Thymusdrüsen. Teil I. Das normale Organ — zugleich eine kritische Beleuchtung der Lehre des “Status thymicus”. Z Mikr Anat Forsch (Leipzig) 6: 1–570, 1926.

    Google Scholar 

  182. Rudberg H: Studien über die Thymusinvolution. I. Die Involution nach Röntgenbestrahlung. Arch Anat Suppl: 123–174, 1907.

    Google Scholar 

  183. Lubarsch O: Zur pathologischen Anatomie der Erschöpfungs-und Ernährungskrankheiten. Zieglers Beitr 69: 242–251, 1921.

    Google Scholar 

  184. Saito H: Beiträge zur pathologischen Anatomie und Histologie der Ernährungsstörungen der Säuglinge. Virchows Arch 250: 69, 1924.

    Article  Google Scholar 

  185. Lewin JE: Involution und Regeneration des Thymus unter dem Einfluss von Benzol. Virchows Arch Pathol Anat 268: 1–16, 1928.

    Article  Google Scholar 

  186. Babès A: Sur la nature du réticulum du thymus. Compt Rend Soc Biol 101: 196, 1929.

    Google Scholar 

  187. Marine D: Some effects of suprarenal injury on natural and acquired resistance. Libmann Anniv Vols 2: 773–780, 1932.

    Google Scholar 

  188. Crotti A: Research on etiology of endemic goiter. Tr Int Coll Surg 1: 141–154, 1938.

    Google Scholar 

  189. Downey H: Cytology of rabbit thymus and regeneration of its thymocytes after irradiation, with some notes on the human thymus. Blood 3: 1315–1341, 1948.

    PubMed  CAS  Google Scholar 

  190. Baillif RN: Thymic involution and regeneration in albino rat, following injection of acid colloidal substances. Am J Anat 84: 457–510, 1949.

    Article  PubMed  CAS  Google Scholar 

  191. Loewenthal LA, Smith C: Studies in the thymus of the mammal. IV. Lipid-laden foamy cells in the involuting thymus of the mouse. Anat Rec 112: 1–15, 1952.

    Article  PubMed  CAS  Google Scholar 

  192. Bodey B, Calvo W, Prummer O, Fliedner TM, Borysenko M: Development and histogenesis of the thymus in dog. A light and electronmicroscopical study. Dev Comp Immunol 11: 227–238, 1987.

    Article  PubMed  CAS  Google Scholar 

  193. Bodey B: Development of the lymphopoiesis as a function of the thymic microenvironment. Use of CD8+ cytotoxic T lymphocytes for cellular immunotherapy of human cancer. IN VIVO 8: 915–943, 1994.

    PubMed  CAS  Google Scholar 

  194. Tschassownikow N: Über die in vitro-Kulturen des Thymus. Arch Exp Zellforsch 3: 250–276, 1926.

    Google Scholar 

  195. Aschoff L: Das reticulo-endotheliale System. Erg Inn Med 26: 1–118, 1924.

    Google Scholar 

  196. Teploff I: Zur Methodik der Blutmikroanalyse. Biochem Ztschr 202: 14–17, 1928.

    Google Scholar 

  197. Seki M: Zur Kenntnis der intra-und supravitalen Färbung; färberischer Beweis für die Reichlichkeit von basischen Substanzen in den Histiocyten und Retikuloendothelien. Ztschr Zellforsch Mikr Anat 19: 238–265, 1933.

    Article  Google Scholar 

  198. Murray RG: Pure cultures of rabbit thymus epithelium. Am J Anat 81: 369–411, 1947.

    Article  PubMed  CAS  Google Scholar 

  199. Kiyono K: Zur Frage der histiozytären Blutzellen. Folia Hematol 18: 149–170, 1914.

    Google Scholar 

  200. Popoff NW: Histogenesis of the thymus as shown by tissue cultures. Arch Exp Zellforsch 4: 395–418, 1927.

    Google Scholar 

  201. Baginski S, Borsuk J: Le thymus et le système réticulo-endothélial. Bull ďHistol Appliq Physiol 16: 105–109, 1939.

    Google Scholar 

  202. Hammar JA: Die normal-morphologische Thymusforschung im letzten Vierteljahrhundert. Analyse und Synthese. Leipzig, Barth, 1936.

    Google Scholar 

  203. Deanesly R: Experimental studies on histology of mammalian thymus. Quart J Micr Sc 72: 247–275, 1928.

    Google Scholar 

  204. Dontigny P, Beland E, Hall E, Selye H: Influence de ľadrénalectomie sur ľaction néphrosclérotique des préparations hypophysaires. Rev Canad Biol 5: 356–358, 1946.

    Google Scholar 

  205. Deane HW, Greep RD: Cytochemical study of adrenal cortex in hypo-and hyperthyroidism. Endocrinology 41: 243–257, 1947.

    Article  CAS  PubMed  Google Scholar 

  206. Savard K, Homburger F: Thymic atrophy and lymphoid hyperplasia in mice bearing sarcoma 180. Proc Soc Exp Biol Med 70: 68–70, 1949.

    PubMed  CAS  Google Scholar 

  207. Selye H: Thymus and adrenals in the response of the organism to injuries and intoxications. Br J Exp Pathol 17: 234–248, 1936.

    CAS  Google Scholar 

  208. Smith C, Holst EA: Studies of the thymus of the mammal. VII. Lipids in the thymuses of irradiated mice. Anat Rec 116: 123–137, 1953.

    Article  PubMed  CAS  Google Scholar 

  209. Smith C: The thymus in immunobiology. In: The Thymus in Immunobiology. Structure, function and role in disease. (Good RA, Gabrielsen AE, eds) New York, Harper & Row, Inc., 1964.

    Google Scholar 

  210. Kostowiecki M: Development and degeneration of the second type of Hassalľs corpuscles in the thymus of guinea pig. Anat Rec 142: 195–203, 1962.

    Article  PubMed  CAS  Google Scholar 

  211. Nelson DS: Macrophages: progress and problems. Clin Exp Immunol 45: 225–233, 1981.

    PubMed  CAS  Google Scholar 

  212. Carr I: The fine structure of microfibrils and microtubules in macrophages and other lymphoreticular cells in relation to cytoplasmic movement. J Anat 112: 383–389, 1972.

    PubMed  CAS  Google Scholar 

  213. Carr I: The reticulum cell and the reticular cell in the mouse popliteal lymph node. An electron microscopic autoradiographic study. Virchows Arch B Cell Pathol 15: 1–10, 1973.

    PubMed  CAS  Google Scholar 

  214. van Furth R, van der Meer JW: Reticulum cell not a haematopoietic stem cell. Br Med J 3: 371, 1975.

    PubMed  Google Scholar 

  215. Shevach EM: The function of macrophages in antigen recognition by guinea pig T lymphocytes. III. Genetic analysis of the antigens mediating macrophage-T lymphocyte interaction. J Immunol 116: 1482–1489, 1976.

    PubMed  CAS  Google Scholar 

  216. Unanue ER: Secretory function of mononuclear phagocytes: a review. Am J Pathol 83: 396–417, 1976.

    PubMed  CAS  Google Scholar 

  217. Unanue ER: The macrophage as a regulator of lymphocyte function. Hosp Pract 14: 61–64, 69–74, 1979.

    PubMed  CAS  Google Scholar 

  218. Unanue ER: Cooperation between mononuclear phagocytes and lymphocytes in immunity. N Engl J Med 303: 977–985, 1980.

    Article  PubMed  CAS  Google Scholar 

  219. Cline MJ: Monocytes, macrophages, and their diseases in man. J Invest Dermatol 71: 56–58, 1978.

    Article  PubMed  CAS  Google Scholar 

  220. Cline MJ, Lehrer RI, Territo MC, Golde DW: UCLA Conference. Monocytes and macrophages: functions and diseases. Ann Int Med 88: 78–88, 1978.

    PubMed  CAS  Google Scholar 

  221. Cohn ZA: Activation of mononuclear phagocytes: fact, fancy, and future. J Immunol 121: 813–816, 1978.

    PubMed  CAS  Google Scholar 

  222. Persson U, Hammarstrom L, Moller E, Moller G, Smith CI: The role of adherent cells in B and T lymphocyte activation. Immunol Rev 40: 78–101, 1978.

    Article  PubMed  CAS  Google Scholar 

  223. Hopper KE, Wood PR, Nelson DS: Macrophage heterogeneity. Vox Sanguinis 36: 257–274, 1979.

    PubMed  CAS  Google Scholar 

  224. Hopper KE, Harrison J, Nelson DS: Partial characterization of anti-tumor effector macrophages in the peritoneal cavities of concomitantly immune mice and mice injected with macrophage-stimulating agents. J Reticuloendo Soc 26: 259–271, 1979.

    CAS  Google Scholar 

  225. Nathan CF, Murray HW, Cohn ZA: The macrophage as an effector cell. N Engl J Med 303: 622–626, 1980.

    Article  PubMed  CAS  Google Scholar 

  226. Unanue ER: The regulation of lymphocyte functions by the macrophage. Immunol Rev 40: 227–255, 1978.

    Article  PubMed  CAS  Google Scholar 

  227. Holt PG, Batty JE: Macrophage regulation of the IgE response. I. Studies on the immunogenicity and antigenicity of macrophage-associated antigen. Int Arch Allergy App Immunol 63: 73–82, 1980.

    CAS  Google Scholar 

  228. Katz DH: Recent studies on the regulation of IgE antibody synthesis in experimental animals and man. Immunology 41: 1–24, 1980.

    PubMed  CAS  Google Scholar 

  229. Nelson M, Nelson DS: Macrophages and resistance to tumours: influence of agents affecting macrophages and delayed-type hypersensitivity on resistance to tumours inducing concomitant immunity. Australian J Exp Biol Med Sci 56: 211–223, 1978.

    Article  CAS  Google Scholar 

  230. Nelson M, Nelson DS: Macrophages and resistance to tumours. I. Inhibition of delayed-type hypersensitivity reactions by tumour cells and by soluble products affecting macrophages. Immunology 34: 277–290, 1978.

    PubMed  CAS  Google Scholar 

  231. Nelson DS, Hopper KE, Blanden RV, Gardner ID, Kearney R: Failure of immunogenic tumors to elicit cytolytic T cells in syngeneic hosts. Cancer Lett 5: 61–67, 1978.

    Article  PubMed  CAS  Google Scholar 

  232. Kirchner H, Glaser M, Holden HT, Fernbach BR, Herberman RB: Suppressor cells in tumor bearing mice and rats. Biomedicine 24: 371–374, 1976.

    PubMed  CAS  Google Scholar 

  233. Ptak W, Zembala M, Gershon RK: Intermediary role of macrophages in the passage of suppressor signals between T-cell subsets. J Exp Med 148: 424–434, 1978.

    Article  PubMed  CAS  Google Scholar 

  234. Kallenberg CG, de Gast GC, The TH: Suppression of DNA synthesis by con A-activated human lymphocytes: role of monocytes in con A-induced suppression. Clin Exp Immunol 41: 583–590, 1980.

    PubMed  CAS  Google Scholar 

  235. Harris PE, Colovai AI, Maffei A, Liu Z, Foca NS: Major histocompatibility complex class I presentation of exogenous and endogenous protein-derived peptides by a transfected human monocyte cell line. Immunology 86: 606–611, 1995.

    PubMed  CAS  Google Scholar 

  236. Herberman RB, Holden HT: Natural cell-mediated immunity. Adv Cancer Res 27: 305–377, 1978.

    Article  PubMed  CAS  Google Scholar 

  237. Herberman RB, Holden HT, Djeu JY, Jerrells TR, Varesio L, Tagliabue A, White SL, Oehler JR, Dean JH: Macrophages as regulators of immune responses against tumors. Adv Exp Med Biol 121B: 361–379, 1979.

    PubMed  CAS  Google Scholar 

  238. Herberman RB, Djeu J, Kay HD, Ortaldo JR, Riccardi C, Bonnard GD, Holden HT, Fagnani R, Santoni A, Puccetti P: Natural killer cells: characteristics and regulation of activity. Immunol Rev 44: 43–70, 1979.

    Article  PubMed  CAS  Google Scholar 

  239. Herberman RB, Holden HT: Natural killer cells as antitumor effector cells. J Natl Cancer Inst 62: 441–445, 1979.

    PubMed  CAS  Google Scholar 

  240. Kurland J, Moore MA: Modulation of hemopoiesis by prostaglandins. Exp Hematol 5: 357–373, 1977.

    PubMed  CAS  Google Scholar 

  241. Kurland JI, Bockman R: Prostaglandin E production by human blood monocytes and mouse peritoneal macrophages. J Exp Med 147: 952–957, 1978.

    Article  PubMed  CAS  Google Scholar 

  242. Kurland JI, Broxmeyer HE, Pelus LM, Bockman RS, Moore MA: Role for monocyte-macrophage-derived colony-stimulating factor and prostaglandin E in the positive and negative feedback control of myeloid stem cell proliferation. Blood 52: 388–407, 1978.

    PubMed  CAS  Google Scholar 

  243. Kurland JI, Bockman RS, Broxmeyer HE, Moore MA: Limitation of excessive myelopoiesis by the intrinsic modulation of macrophage-derived prostaglandin E. Science 199: 552–555, 1978.

    Article  PubMed  CAS  Google Scholar 

  244. Kurland JI, Pelus LM, Ralph P, Bockman RS, Moore MA: Induction of prostaglandin E synthesis in normal and neoplastic macrophages: role for colony-stimulating factor(s) distinct from effects on myeloid progenitor cell proliferation. Proc Natl Acad Sci USA 76: 2326–2330, 1979.

    Article  PubMed  CAS  Google Scholar 

  245. Kurland JI, Meyers PA, Moore MA: Synthesis and release of erythroid colony-and burst-potentiating activities by purified populations of murine peritoneal macrophages. J Exp Med 151: 839–852, 1980.

    Article  PubMed  CAS  Google Scholar 

  246. Leibovich SJ, Ross R: A macrophage-dependent factor that stimulates the proliferation of fibroblasts in vitro. Am J Pathol 84: 501–14, 1976.

    PubMed  CAS  Google Scholar 

  247. Leibovich SJ: Production of macrophage-dependent fibroblast-stimulating activity (M-FSA) by murine macrophages. Effects on BALBc 3T3 fibroblasts. Exp Cell Res 113: 47–56, 1978.

    Article  PubMed  CAS  Google Scholar 

  248. Calvo W, Fliedner TM, Herbst EW, Hugl E, Bodey B: Degenerative changes and recovery of the thymus of lethally irradiated dogs, rescued by transfusion of cryopreserved autologous blood leukocytes. Exp Hematol 15: 1171–1178, 1987.

    PubMed  CAS  Google Scholar 

  249. Wu L, Scollay R, Egerton M, Pearse M, Spangrude GJ, Shortman K: CD4 expressed on earliest T-lineage precursor cells in the adult murine thymus. Nature 349: 71–74, 1991.

    Article  PubMed  CAS  Google Scholar 

  250. Wu L, Li CL, Shortman K: Thymic dendritic cell precursors: relationship to the T lymphocyte lineage and phenotype of the dendritic cell progeny. J Exp Med 184: 903–911, 1996.

    Article  PubMed  CAS  Google Scholar 

  251. Shortman K, Caux C: Dendritic cells development: multiple pathways to nature’s adjuvants. Stem Cells 15: 409–419, 1997.

    Article  PubMed  CAS  Google Scholar 

  252. Shortman K, Wu L: Parentage and heritage of dendritic cells. Blood 97: 3325, 2001.

    Article  PubMed  CAS  Google Scholar 

  253. Wu L, D’Amico A, Hochrein H, O’Keeffe M, Shortman K, Lucas K: Development of thymic and splenic dendritic cell populations from different hemopoietic precursors. Blood 98: 3376–3382, 2001.

    Article  PubMed  CAS  Google Scholar 

  254. Shortman K, Liu YJ: Mouse and human dendritic cell subtypes. Nat Rev Immunol 2: 151–161, 2002.

    Article  PubMed  CAS  Google Scholar 

  255. O’Keeffe M, Hochrein H, Vremac D, Scott B, Hertzog P, Tatarczuch L, Shortman K: Dendritic cell precursor populations of mouse blood: identification of the murine homologues of human blood plasmocytoid pre-DC2 and CD11+ DC1 precursors. Blood 101: 1453–1459, 2003.

    Google Scholar 

  256. Tan PS, Gavin AL, Barnes N, Sears DW, Vremec D, Shortman K, Amigorena S, Mottram PL, Hogarth PM: Unique monoclonal antibodies define expression of FcγRI on macrophages and mast cell lines and demonstrate heterogeneity among subcutaneous and other dendritic cells. J Immunol 170: 2549–2556, 2003.

    PubMed  CAS  Google Scholar 

  257. Kim YJ, Broxmeyer HE: 4-IBB ligand stimulation enhances myeloid dendritic cell maturation from human umbilical cord blood CD34 (+) progenitor cells. J Hematother Stem Cell Res 11: 895–903, 2002.

    Article  PubMed  CAS  Google Scholar 

  258. Guermonprez P, Valladeau J, Zitvogel L, Thery C, Amigorena S: Antigen presentation and T cell stimulation by dendritic cells. Annu Rev Immunol 20: 621–667, 2002.

    Article  PubMed  CAS  Google Scholar 

  259. Steinman RM: Dendritic cells and immune-based therapies. Exp Hematol 24: 859–862, 1996.

    PubMed  CAS  Google Scholar 

  260. Robinson JH, Delvig AA: Diversity in MHC class II antigen presentation. Immunology 105: 252–262, 2002.

    Article  PubMed  CAS  Google Scholar 

  261. Kalinski P, Hilkens CM, Wierenga EA, Kapsenberg ML: T-cell priming by type-1 and type-2 polarized dendritic cells: the concept of a third signal. Immunol Today 20: 561–567, 1999.

    Article  PubMed  CAS  Google Scholar 

  262. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, Pulendran B, Palucka K: Immunobiology of dendritic cells. Annu Rev Immunol 18: 767–811, 2000.

    Article  PubMed  CAS  Google Scholar 

  263. Lutz MB, Assmann CU, Girolomoni G, Ricciardi-Castagnoli P: Different cytokines regulate antigen uptake and presentation of a precursor dendritic cell line. Eur J Immunol 26: 586–594, 1996.

    Article  PubMed  CAS  Google Scholar 

  264. Aderem A, Ulevitch RJ: Toll-like receptors in the induction of the innate immune response. Nature 406: 782–787, 2000.

    Article  PubMed  CAS  Google Scholar 

  265. Visintin A, Mazzoni A, Spitzer JH, Wyllie DH, Dower SK, Segal DM: Regulation of Toll-like receptors in human monocytes and dendritic cells. J Immunol 166: 249–255, 2001.

    PubMed  CAS  Google Scholar 

  266. Jurgens M, Wollenberg A, Hanau D, de la Salle H, Bieber T: Activation of human epidermal Langerhans cells by engagement of the high affinity receptor for IgE, Fc epsilon RI. J Immunol 155: 5184–5189, 1995.

    PubMed  CAS  Google Scholar 

  267. Regnault A, Lankar D, Lacabanne V, Rodriguez A, Thery C, Rescigno M, Saito T, Verbeek S, Bonnerot C, Ricciardi-Castagnoli P, Amigorena S: Fcγ receptor-mediated induction of dendritic cell maturation and major histocompatibility complex class I-restricted antigen presentation after immune complex internalization. J Exp Med 189: 371–380, 1999.

    Article  PubMed  CAS  Google Scholar 

  268. Geissmann F, Launay P, Pasquier B, Lepelletier Y, Leborgne M, Lehuen A, Brousse N, Monteiro RC: A subset of human dendritic cells expresses IgA Fc receptor (CD89), which mediates internalization and activation upon cross-linking by IgA complexes. J Immunol 166: 346–352, 2001.

    PubMed  CAS  Google Scholar 

  269. Thery C, Amigorena S: The cell biology of antigen presentation in dendritic cells. Curr Opin Immunol 13: 45–51, 2001.

    Article  PubMed  CAS  Google Scholar 

  270. Galluci S, Matzinger P: Danger signals: SOS to the immune system. Curr Opin Immunol 13: 114–119, 2001.

    Article  Google Scholar 

  271. Steinman RM, Nussenzweig MC: Dendritic cells: features and functions. Immunol Rev 53: 127–148, 1980.

    Article  PubMed  CAS  Google Scholar 

  272. Steinman RM: The dendritic cell system and its role in immunogenicity. Annual Rev Immunol 9: 271–296, 1991.

    Article  CAS  Google Scholar 

  273. Monaco JJ: Structure and function of genes in the MHC class II region. Curr Opin Immunol 5: 17–20, 1993.

    Article  PubMed  CAS  Google Scholar 

  274. Neefjes JJ, Momburg F: Cell biology of antigen presentation. Curr Opin Immunol 5: 27–34, 1993.

    Article  PubMed  CAS  Google Scholar 

  275. Braciale TJ, Braciale VL: Antigen presentation: structural themes and functional variations. Immunol Today 12: 124–129, 1991.

    Article  PubMed  CAS  Google Scholar 

  276. Engering AJ, Cella M, Fluitsma DM, Hoefsmit EC, Lanzavecchia A, Pieters J: Mannose receptor mediated antigen uptake and presentation in human dendritic cells. Adv Exp Med Biol 417: 183–187, 1997.

    PubMed  CAS  Google Scholar 

  277. Matzinger P: Tolerance, danger, and the extended family. Annu Rev Immunol 12: 991–1045, 1994.

    PubMed  CAS  Google Scholar 

  278. Nanda NK, Sercarz E: A truncated T cell receptor repertoire reveals underlying immunogenicity of an antigenic determinant. J Exp Med 184: 1037–1043, 1996.

    Article  PubMed  CAS  Google Scholar 

  279. Lee PP, Yee C, Savage PA, Fong L, Brockstedt D, Weber JS, Johnson D, Swetter S, Thompson J, Greenberg PD, Roederer M, Davis MM: Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients. Nat Med 5: 677–685, 1999.

    Article  PubMed  CAS  Google Scholar 

  280. Pardoll DM: Inducing autoimmune disease to treat cancer. Proc Natl Acad Sci USA 96: 5340–5342, 1999.

    Article  PubMed  CAS  Google Scholar 

  281. Bodey B, Bodey B Jr., Siegel SE, Kaiser HE: Failure of cancer vaccines: the significant limitations of this approach to immunotherapy. Anticancer Research 20: 2665–2676, 2000.

    PubMed  CAS  Google Scholar 

  282. Ribas A, Butterfield LH, Glaspy JA, Economou JS: Cancer immunotherapy using gene-modified dendritic cells. Curr Gene Ther 2: 57–78, 2002.

    Article  PubMed  CAS  Google Scholar 

  283. Bennett SR, Carbone FR, Karamalis F, Flavell RA, Miller JF, Heath WR: Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature 393: 478–480, 1998.

    Article  PubMed  CAS  Google Scholar 

  284. Ridge JP, Di Rosa F, Matzinger P: A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 393: 474–478, 1998.

    Article  PubMed  CAS  Google Scholar 

  285. Grakoui A, Bromley SK, Sumen C, Davis MM, Shaw AS, Allen PM, Dustin ML: The immunological synapse: a molecular machine controlling T cell activation. Science 285: 221–227, 1999.

    Article  PubMed  CAS  Google Scholar 

  286. Malissen B: Dancing the immunological two-step. Science 285: 207–208, 1999.

    Article  PubMed  CAS  Google Scholar 

  287. Wulfing C, Davis MM: A receptor/cytoskeletal movement triggered by costimulation during T cell activation. Science 282: 2266–2269, 1998.

    Article  PubMed  CAS  Google Scholar 

  288. Bachmann MF, Wong BR, Josien R, Steinman RM, Oxenius A, Choi Y: TRANCE, a tumor necrosis factor family member critical for CD40 ligand-independent T helper cell activation. J Exp Med 189: 1025–1031, 1999.

    Article  PubMed  CAS  Google Scholar 

  289. Lu Z, Yuan L, Zhou X, Sotomayor E, Levitsky HI, Pardoll DM: CD40-independent pathways of T cell help for priming of CD8(+) cytotoxic T lymphocytes. J Exp Med 191: 541–550, 2000.

    Article  PubMed  CAS  Google Scholar 

  290. Chinnaiyan AM, Hanna WL, Orth K, Duan H, Poirier GG, Froelich CJ, Dixit VM: Cytotoxic T-cell-derived granzyme B activates the apoptotic protease ICE-LAP3. Curr Biol 6: 897–899, 1996.

    Article  PubMed  CAS  Google Scholar 

  291. Froelich CJ, Dixit VM, Yang X: Lymphocyte granule-mediated apoptosis: matters of viral mimicry and deadly proteases. Immunol Today 19: 30–36, 1998.

    Article  PubMed  CAS  Google Scholar 

  292. Inaba K, Swiggard WJ, Inaba M, Meltzer J, Mirza A, Sasagawa T, Nussenzweig MC, Steinman RM: Tissue distribution of the DEC-205 protein that is detected by the monoclonal antibody NLDC-145. I. Expression on dendritic cells and other subsets of mouse leukocytes. Cell Immunol 163: 148–156, 1995.

    Article  PubMed  CAS  Google Scholar 

  293. Guo M, Gong S, Maric S, Misulovin Z, Pack M, Mahnke K, Nussenzweig MC, Steinman RM: A monoclonal antibody to the DEC-205 endocytosis receptor on human dendritic cells. Hum Immunol 61: 729–738, 2000.

    Article  PubMed  CAS  Google Scholar 

  294. Kato M, Neil TK, Fearnley DB, McLellan AD, Vuckovic S, Hart DN: Expression of multilectin receptors and comparative FITC-dextran uptake by human dendritic cells. Int Immunol 12: 1511–1519, 2000.

    Article  PubMed  CAS  Google Scholar 

  295. Small M, Kraal G: In vitro evidence for participation of DEC-205 expressed by thymic cortical epithelial cells in clearance of apoptotic thymocytes. Int Immunol 15: 197–203, 2003.

    Article  PubMed  CAS  Google Scholar 

  296. Jiang W, Swiggard WJ, Heufler C, Peng M, Mirza A, Steinman RM, Nussenzweig MC: The receptor DEC-205 expressed by dendritic cells and thymic epithelial cells is involved in antigen processing. Nature 375: 151–155, 1995.

    Article  PubMed  CAS  Google Scholar 

  297. Mahnke K, Guo M, Lee S, Sepulveda H, Swain SL, Nussenzweig M, Steinman RM: The dendritic cell receptor for endocytosis, DEC-205, can recycle and enhance antigen presentation via major histocompatibility complex class II-positive lysosomal compartments. J Cell Biol 151: 673–684, 2000.

    Article  PubMed  CAS  Google Scholar 

  298. Valladeau J, Ravel O, Dezutter-Dambuyant C, Moore K, Kleijmeer M, Liu Y, Duvert-Frances V, Vincent C, Schmitt D, Davoust J, Caux C, Lebecque S, Saeland S: Langerin, a novel C-type lectin specific to Langerhans cells, is an endocytic receptor that induces the formation of Birbeck granules. Immunity 12: 71–81, 2000.

    Article  PubMed  CAS  Google Scholar 

  299. Geijtenbeek TB, Krooshoop DJ, Bleijs DA, van Vliet SJ, van Duijnhoven GC, Grabovsky V, Alon R, Figdor CG, van Kooyk Y: DC-SIGN-ICAM-2 interaction mediates dendritic cell trafficking. Nat Immunol 1: 353–357, 2000.

    Article  PubMed  CAS  Google Scholar 

  300. Geijtenbeek TB, Engering A, Van Kooyk Y: DC-SIGN, a C-type lectin on dendritic cells that unveils many aspects of dendritic cell biology. J Leukoc Biol 71: 921–931, 2002.

    PubMed  CAS  Google Scholar 

  301. Sijts A, Zaiss D, Kloetzel PM: The role of the ubiquitin-proteasome pathway in MHC class I antigen processing: implications for vaccine design. Curr Mol Med 1: 665–676, 2001.

    Article  PubMed  CAS  Google Scholar 

  302. Bodey B, Neuroendocrine influence on thymic haematopoiesis via the reticulo-epithelial cellular network. Expert Opinion Therapeutical Targets 6: 57–72, 2002.

    Article  CAS  Google Scholar 

  303. Kasai M, Hirokawa K, Kajino K, Ogasawara K, Tatsumi M, Hermel E, Monaco JJ, Mizuochi T: Difference in antigen presentation pathways between cortical and medullary thymic epithelial cells. Eur J Immunol 26: 2101–2107, 1996.

    Article  PubMed  CAS  Google Scholar 

  304. Bodey B, Bodey B Jr., Kaiser HE: Dendritic type, accessory cells within the mammalian thymic microenvironment. Antigen presentation in the dendritic neuro-endocrine-immune cellular network. IN VIVO 11: 351–370, 1997.

    PubMed  CAS  Google Scholar 

  305. Darsow U, Ring J: Neuroimmune interactions in the skin. Curr Opinion Allergy Clin Immunol 1: 435–439, 2001.

    CAS  Google Scholar 

  306. Timmerman JM, Levy R: Dendritic cell vaccines for cancer immunotherapy. Annu Rev Med 50: 507–529, 1999.

    Article  PubMed  CAS  Google Scholar 

  307. Foss FM: Immunologic mechanisms of antitumor activity. Semin Oncol 29: 5–11, 2002.

    Article  PubMed  CAS  Google Scholar 

  308. Porgador A, Gilboa E: Bone marrow-generated dendritic cells pulsed with a class I-restricted peptide are potent inducers of cytotoxic T lymphocytes. J Exp Med 182: 255–260, 1995.

    Article  PubMed  CAS  Google Scholar 

  309. Bodey B, Bodey B Jr., Kaiser HE: Apoptosis in the mammalian thymus during its normal histogenesis and under various in vitro and in vivo experimental conditions. IN VIVO 12: 123–134, 1998.

    PubMed  CAS  Google Scholar 

  310. Bodey B, Bodey B Jr., Siegel SE, Kaiser HE: Over-expression of endoglin (CD105): A marker of breast carcinoma-induced neo-vascularization. Anticancer Research 18: 3621–3628, 1998.

    PubMed  CAS  Google Scholar 

  311. Bodey B, Bodey B Jr., Siegel SE, Kaiser HE: Immunophenotypical (IP) analysis and immunobiology of childhood primary brain tumors. Anticancer Research 19: 2973–2992, 1999.

    PubMed  CAS  Google Scholar 

  312. Bodey B, Bodey B Jr., Siegel SE, Kaiser HE: Immunocytochemical detection of MMP-3 and-10 expression in hepatocellular carcinomas. Anticancer Research 20: 4585–4590, 2000.

    PubMed  CAS  Google Scholar 

  313. Bodey B, Bodey B Jr., Gröger AM, Siegel SE, Kaiser HE: Immunocytochemical detection of Homeobox B3, B4, and C6 gene product expression in lung carcinomas. Anticancer Research 20: 2711–2716, 2000.

    PubMed  CAS  Google Scholar 

  314. Bodey B, Bodey B Jr., Siegel SE, Kaiser HE: Matrix metalloproteinase expression in malignant melanomas: tumor-extracellular matrix interactions in invasion and metastasis. IN VIVO 15: 57–64, 2001.

    PubMed  CAS  Google Scholar 

  315. Bodey B, Siegel SE, Kaiser HE: MAGE-1, a Cancer-Testis Antigen, Expression in Childhood Astrocytomas as an Indicator of Tumor Progression. IN VIVO 16: 583–588, 2002.

    PubMed  CAS  Google Scholar 

  316. Nair SK, Snyder D, Rouse BT, Gilboa E: Regression of tumors in mice vaccinated with professional antigen-presenting cells pulsed with tumor extracts. Int J Cancer 70: 706–715, 1997.

    Article  PubMed  CAS  Google Scholar 

  317. Paquette RL, Hsu NC, Kiertscher SM, Park AN, Tran L, Roth MD, Glaspy JA: Interferon-α and granulocyte-macrophage colony-stimulating factor differentiate peripheral blood monocytes into potent antigen-presenting cells. J Leukocyte Biol 64: 358–367, 1998.

    PubMed  CAS  Google Scholar 

  318. Carbone JE, Ohm DP: Immune dysfunction in cancer patients. Oncology (Huntingt) 16: 11–18, 2002.

    Google Scholar 

  319. Pioche C, Salomon B, Klatzmann D: Cellules dendritiques et therapie cellulaire antitumorale. Pathologie Biologie 43: 904–909, 1995.

    PubMed  CAS  Google Scholar 

  320. Turnbull E, Macpherson G. Immunobiology of dendritic cells in the rat. Immunol Rev 184: 58–68, 2001.

    Article  PubMed  CAS  Google Scholar 

  321. Gunzer M, Grabbe S: Dendritic cells in cancer immunotherapy. Crit Rev Immunol 21: 133–145, 2001.

    PubMed  CAS  Google Scholar 

  322. Gallucci S, Lolkema M, Matzinger P: Natural adjuvants: endogenous activators of dendritic cells. Nat Med 5: 1249–1255, 1999.

    Article  PubMed  CAS  Google Scholar 

  323. Gabrilovich DI, Ciernik IF, Carbone DP: Dendritic cells in antitumor immune responses. I. Defective antigen presentation in tumor-bearing hosts. Cell Immunol 170: 101–110, 1996.

    Article  PubMed  CAS  Google Scholar 

  324. Gabrilovich DI, Corak J, Ciernik IF, Kavanaugh D, Carbone DP: Decreased antigen presentation by dendritic cells in patients with breast cancer. Clin Cancer Res 3: 483–490, 1997.

    PubMed  CAS  Google Scholar 

  325. Eibl B, Ebner S, Duba C, Bock G, Romani N, Erdel M, Gachter A, Niederwieser D, Schuler G: Dendritic cells generated from blood precursors of chronic myelogenous leukemia patients carry the Philadelphia translocation and can induce a CML-specific primary cytotoxic T-cell response. Genes Chromosomes Cancer 20: 215–223, 1997.

    Article  PubMed  CAS  Google Scholar 

  326. Choudhury BA, Liang JC, Thomas EK, Flores-Romo L, Xie QS, Agusala K, Sutaria S, Sinha I, Champlin RE, Claxton DF: Dendritic cells derived in vitro from acute myelogenous leukemia cells stimulate autologous, antileukemic T-cell responses. Blood 93: 780–786, 1999.

    PubMed  CAS  Google Scholar 

  327. Charbonnier A, Gaugler B, Sainty D, Lafage-Pochitaloff M, Olive D: Human acute myeloblastic leukemia cells differentiate in vitro into mature dendritic cells and induce the differentiation of cytotoxic T cells against autologous leukemias. Eur J Immunol 29: 2567–2578, 1999.

    Article  PubMed  CAS  Google Scholar 

  328. Ruiz-Cabello F, Cabrera T, Lopez-Nevot MA, Garrido F: Impaired surface antigen presentation in tumors: implications for T cell-based immunotherapy. Semin Cancer Biol 12: 15–24, 2002.

    Article  PubMed  CAS  Google Scholar 

  329. Iezzi G, Protti MP, Rugarli C, Bellone M: B7.1 expression on tumor cells circumvents the need of professional antigen presentation for in vitro propagation of cytotoxic T cell lines. Cancer Res 56: 11–15, 1996.

    PubMed  CAS  Google Scholar 

  330. Amoscato AA, Prenovitz DA, Lotze MT: Rapid extracellular degradation of synthetic class I peptides by human dendritic cells. J Immunol 161: 4023–4032, 1998.

    PubMed  CAS  Google Scholar 

  331. Ludewig B, McCoy K, Pericin M, Ochsenbein AF, Dumrese T, Odermatt B, Toes RE, Melief CJ, Hengartner H, Zinkernagel RM: Rapid peptide turnover and inefficient presentation of exogenous antigen crutically limit the activation of self-reactive CTL by dendritic cells. J Immunol 166: 3678–3687, 2001.

    PubMed  CAS  Google Scholar 

  332. Schmidt SM, Schag K, Mueller MR, Weck MM, Appel S, Kanz L, Gruenebach F, Brossart P: Survivin is a shared tumor associated antigen expressed in a broad variety of malignancies and recognized by specific cytotoxic T-cells. Blood Feb 6, 2003.

    Google Scholar 

  333. Wolfers J, Lozier A, Raposo G, Regnault A, Thery C, Masurier C, Flament C, Pouzieux S, Faure F, Tursz T, Angevin E, Amigorena S, Zitvogel L: Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat Med 7: 297–303, 2001.

    Article  PubMed  CAS  Google Scholar 

  334. Kaplan JM, Yu Q, Piraino ST, Pennington SE, Shankara S, Woodworth LA, Roberts BL.: Induction of antitumor immunity with dendritic cells transduced with adenovirus vectorencoding endogenous tumor-associated antigens. J Immunol 163: 699–707, 1999.

    PubMed  CAS  Google Scholar 

  335. Kirk CJ, Mule JJ: Gene-modified dendritic cells for use in tumor vaccines. Hum Gene Ther 11: 797–806, 2000.

    Article  PubMed  CAS  Google Scholar 

  336. Furumoto K, Arii S, Yamasaki S, Mizumoto M, Mori A, Inoue N, Isobe N, Imamura M: Spleen-derived dendritic cells engineered to enhance interleukin-12 production elicit therapeutic antitumor immune responses. Int J Cancer 87: 665–672, 2000.

    Article  PubMed  CAS  Google Scholar 

  337. Hirschowitz EA, Weaver JD, Hidalgo GE, Doherty DE: Murine dendritic cells infected with adenovirus vectors show signs of activation. Gene Ther 7: 1112–1120, 2000.

    Article  PubMed  CAS  Google Scholar 

  338. Jenne L, Schuler G, Steinkasserer A: Viral vectors for dendritic cell-based immunotherapy. Trends Immunol 22: 102–107, 2001.

    Article  PubMed  CAS  Google Scholar 

  339. Paul S, Calmels B, Acres RB: Improvement of adoptive cellular immunotherapy of human cancer using ex-vivo gene transfer. Curr Gene Ther 2: 91–100, 2002.

    Article  PubMed  CAS  Google Scholar 

  340. Bodey B: Spontaneous regression of neoplasms: new possibilities for immunotherapy. Expert Opinion Biological Therapy 2: 459–476, 2002.

    Article  CAS  Google Scholar 

  341. Maecker B, Von Bergwelt-Baidon, Anderson KS, Vonderheide RH, Schultze JL: Linking genomics to immunotherapy by reverse immunology-‘immunomics’ in the new millennium. Curr Mol Med 1: 609–619, 2001.

    Article  PubMed  CAS  Google Scholar 

  342. Onaitis M, Kalady MF, Pruitt S, Tyler DS: Dendritic cell gene therapy. Surg Oncol Clin N Am 11: 645–660, 2002.

    Article  PubMed  Google Scholar 

  343. Scheffer SR, Nave H, Korangy F, Schlote K, Pabst R, Jaffee EM, Manns MP, Greten TF: Apoptotic, but not necrotic, tumor cell vaccines induce a potent immune response in vivo. Int J Cancer 103: 205–211, 2003.

    Article  PubMed  CAS  Google Scholar 

  344. Steinman RM, POPE M: Exploiting dendritic cells to improve vaccine efficacy. J Clin Invest 109: 1519–1526, 2002.

    Article  PubMed  CAS  Google Scholar 

  345. Gilboa E: Immunotherapy of cancer with genetically modified tumor vaccines. Semin Oncol 23: 101–107, 1996.

    PubMed  CAS  Google Scholar 

  346. Topf N, Schmiegel WH: Immuntherapie mit genetisch modifizierten Tumorzellen. Internist 37: 374–381, 1996.

    PubMed  CAS  Google Scholar 

  347. Zhang W, He L, Yuan Z, Xie Z, Wang J, Hamada H, Cao X: Enhanced therapeutic efficacy of tumor RNA-pulsed dendritic cells after genetic modification with lymphotactin. Hum Gene Ther 10: 1151–1161, 1999.

    Article  PubMed  CAS  Google Scholar 

  348. Klein C, Bueler H, Mulligan RC: Comparative analysis of genetically modified dendritic cells and tumor cells as therapeutic cancer vaccines. J Exp Med 191: 1699–1708, 2000.

    Article  PubMed  CAS  Google Scholar 

  349. Armstrong TD, Jaffee EM: Cytokine modified tumor vaccines. Surg Oncol Clin N Am 11: 681–696, 2002.

    Article  PubMed  Google Scholar 

  350. Gong J, Avigan D, Chen D, Wu Z, Koido S, Kashiwaba M, Kufe D: Activation of antitumor cytotoxic T lymphocytes by fusions of human dendritic cells and breast carcinoma cells. Proc Natl Acad Sci USA 97: 2715–2718, 2000.

    Article  PubMed  CAS  Google Scholar 

  351. Xia J, Tanaka Y, Koido S, Liu C, Mukherjee P, Gendler SJ, Gong J.: Prevention of spontaneous breast carcinoma by prophylactic vaccination with dendritic/tumor fusion cells. J Immunol 170: 1980–1986, 2003.

    PubMed  CAS  Google Scholar 

  352. Schultz J: Success of vaccine offers promise of cervical cancer prevention. J Natl Cancer Inst 95: 102–104, 2003.

    PubMed  Google Scholar 

  353. Shu S, Cohen P: Tumor-dendritic cell fusion technology and immunotherapy strategies. J Immunother 24: 99–100, 2001.

    Article  CAS  Google Scholar 

  354. Lollini PL, De Giovanni C, Nicoletti G, Di Carlo E, Musiani P, Nanni P, Forni G: Immunoprevention of colorectal cancer: a future possibility? Gastroenterol Clin N Am 31: 1001–1014, 2002.

    Article  Google Scholar 

  355. Bell D, Young JW, Banchereau J: Dendritic cells. Adv Immunol 72: 255–324, 1999.

    Article  PubMed  CAS  Google Scholar 

  356. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, Pulendran B, Palucka K: Immunobiology of dendritic cells. Annu Rev Immunol 18: 767–811, 2000.

    Article  PubMed  CAS  Google Scholar 

  357. Staquet MJ, Jacquet C, Dezutter-Dambuyant C, Schmitt D: Fibronectin upregulates in vitro generation of dendritic Langerhans cells from human cord blood CD34+ progenitors. J Invest Dermatol 109: 738–743, 1997.

    Article  PubMed  CAS  Google Scholar 

  358. Rougier N, Schmitt D, Vincent C: IL-4 addition during differentiation of CD34 progenitors delays maturation of dendritic cells while promoting their survival. Eur J Cell Biol 75: 287–293, 1998.

    PubMed  CAS  Google Scholar 

  359. Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dummer R, Burg G, Schadendorf D: Vaccination of melanoma patients with peptide-or tumor lysate-pulsed dendritic cells. Nat Med 4: 328–332, 1998.

    Article  PubMed  CAS  Google Scholar 

  360. Zitvogel L, Angevin E, Tursz T: Dendritic cell-based immunotherapy of cancer. Ann Oncol 11: 199–205, 2000.

    Article  PubMed  Google Scholar 

  361. Panelli MC, Wunderlich J, Jeffries J, Wang E, Mixon A, Rosenberg SA, Marincola FM: Phase I study in patients with metastatic melanoma of immunization with dendritic cells presenting epitopes derived from the melanoma-associated antigens MART-1 and gp100. J Immunother 23: 487–498, 2000.

    Article  PubMed  CAS  Google Scholar 

  362. Small EJ, Fratesi P, Reese DM, Strang G, Laus R, Peshwa MV, Valone FH.: Immunotherapy of hormone-refractory prostate cancer with antigen-loaded dendritic cells. J Clin Oncol 18: 3894–3903, 2000.

    PubMed  CAS  Google Scholar 

  363. Cohen L, De Moor C, Parker PA, Amato RJ: Quality of life in patients with metastatic renal cell carcinoma participating in a phase I trial of an autologous tumor-derived vaccine. Urol Oncol 7: 119–124, 2002.

    Article  PubMed  CAS  Google Scholar 

  364. Tirapu I, Rodriguez-Calvillo M, Qian C, Duarte M, Smerdou C, Palencia B, Mazzolini G, Prieto J, Melero I.: Cytokine gene transfer into dendritic cells for cancer treatment. Curr Gene Ther 2: 79–89, 2002.

    Article  PubMed  CAS  Google Scholar 

  365. Kugler A, Stuhler G, Walden P, Zoller G, Zobywalski A, Brossart P, Trefzer U, Ullrich S, Muller CA, Becker V, Gross AJ, Hemmerlein B, Kanz L, Muller GA, Ringert RH.: Regression of human metastatic renal cell carcinoma after vaccination with tumor cell-dendritic cell hybrids. Nat Med 6: 332–336, 2000.

    Article  PubMed  CAS  Google Scholar 

  366. Gitlitz BJ, Figlin RA, Pantuck AJ, Belldegrun AS: Dendritic cell-based immunotherapy of renal cell carcinoma. Curr Urol Rep 2: 46–52, 2001.

    Article  PubMed  CAS  Google Scholar 

  367. Veelken H, Osterroth F: Vaccination strategies in the treatment of lymphomas. Oncology 62: 187–200, 2002.

    Article  PubMed  CAS  Google Scholar 

  368. Perales MA, Wolchok JD: Melanoma vaccines. Cancer Invest 20: 1012–1026, 2002.

    Article  PubMed  Google Scholar 

  369. Wysocki PJ, Karczewska A, Mackiewicz A: Gene modified tumor vaccines in therapy of malignant melanoma. Otolaryngol Pol 56: 147–153, 2002.

    PubMed  Google Scholar 

  370. Wen JJ, Moore NC: Thymocyte-stromal-cell interactions and T-cell selection. Immunol Today 16: 336–338, 1995.

    Article  Google Scholar 

  371. Kasai M, Hirokawa K, Kajino K, Ogasawara K, Tatsumi M, Hermel E, Monaco JJ, Mizuochi T: Difference in antigen presentation pathways between cortical and medullary thymic epithelial cells. Eur J Immunol 26: 2101–2107, 1996.

    Article  PubMed  CAS  Google Scholar 

  372. Mizuochi T, Kasai M, Kokuho T, Kakiuchi T, Hirokawa K: Medullary but not cortical thymic epithelial cells present soluble antigens to helper T cells. J Exp Med 175: 1601–1605, 1992.

    Article  PubMed  CAS  Google Scholar 

  373. Thomas-Vaslin V, Coltey M, Salaun J: On the mechanisms of thymic epithelium induced tolerance. Comptes Rendus Acad Sciences—Serie Iii, Sciences Vie 319: 401–404, 1996.

    CAS  Google Scholar 

  374. Oukka M, Colucci-Guyon E, Tran PL, Cohen-Tannoudji M, Babinet C, Lotteau V, Kosmatopoulos K: CD4 T cell tolerance to nuclear proteins induced by medullary thymic epithelium. Immunity 4: 545–553, 1996.

    Article  PubMed  CAS  Google Scholar 

  375. Oukka M, Cohen-Tannoudji M, Tanaka Y, Babinet C, Kosmatopoulos K: Medullary thymic epithelial cells induce tolerance to intracellular proteins. J Immunol 156: 968–975, 1996.

    PubMed  CAS  Google Scholar 

  376. Montecino-Rodriguez E, Johnson A, Dorshkind K: Thymic stromal cells can support B cell differentiation from intrathymic precursors. J Immunol 156: 963–967, 1996.

    PubMed  CAS  Google Scholar 

  377. Rincon M, Flavell RA: Regulation of AP-1 and NFAT transcription factors during thymic selection of T cells. Molec Cellular Biol 16: 1074–1084, 1996.

    CAS  Google Scholar 

  378. Lenz P, Elbe A, Stingl G, Bergstresser PR: MHC class I expression on dendritic cells is sufficient to sensitize for transplantation immunity. J Invest Dermatol 107: 844–848, 1996.

    Article  PubMed  CAS  Google Scholar 

  379. Bachmann MF, Lutz MB, Layton GT, Harris SJ, Fehr T, Rescigno M, Ricciardi-Castagnoli P: Dendritic cells process exogenous viral proteins and virus-like particles for class I presentation to CD8+ cytotoxic T lymphocytes. Eur J Immunol 26: 2595–2600, 1996.

    Article  PubMed  CAS  Google Scholar 

  380. Kündig TM, Bachmann MF, DiPaolo C, Simard JJL, Battegay M, Lother H, Gessner A, Kühlcke K, Ohashi PS, Hengartner H, Zinkernagel RM: Fibroblasts as efficient antigen-presenting cells in lymphoid organs. Science 268: 1343–1347, 1995.

    Article  PubMed  Google Scholar 

  381. Pioche C, Salomon B, Klatzmann D: Cellules dendritiques et therapie cellulaire antitumorale. Pathologie Biologie 43: 904–909, 1995.

    PubMed  CAS  Google Scholar 

  382. Iezzi G, Protti MP, Rugarli C, Bellone M: B7.1 expression on tumor cells circumvents the need of professional antigen presentation for in vitro propagation of cytotoxic T cell lines. Cancer Res 56: 11–15, 1996.

    PubMed  CAS  Google Scholar 

  383. Gilboa E: Immunotherapy of cancer with genetically modified tumor vaccines. Semin Oncol 23: 101–107, 1996.

    PubMed  CAS  Google Scholar 

  384. Topf N, Schmiegel WH: Immuntherapie mit genetisch modifizierten Tumorzellen. Internist 37: 374–381, 1996.

    PubMed  CAS  Google Scholar 

  385. Drexhage HA, Mooy P, Jansen A, Kerrebijn J, Allaerts W, Tas MP: Dendritic cells in tumor growth and endocrine diseases. Adv Exp Med Biol 329: 643–650, 1993.

    PubMed  CAS  Google Scholar 

  386. Brodsky FM, Lem L, Bresnahan PA: Antigen processing and presentation. Tissue Antigens 47: 464–471, 1996.

    Article  PubMed  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

(2004). Thymic Accessory Cells, Including Dendritic Type Antigen Presenting Cells, within the Mammalian Thymic Microenvironment. In: Immunological Aspects of Neoplasia — The Role of the Thymus. Cancer Growth and Progression, vol 17. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2185-2_7

Download citation

  • DOI: https://doi.org/10.1007/1-4020-2185-2_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-2184-8

  • Online ISBN: 978-1-4020-2185-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics