Skip to main content

Part of the book series: Nitrogen Fixation: Origins, Applications, and Research Progress ((NITR,volume 2))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anantharaman, V., Koonin, E. V., and Aravind, L. (2001) Regulatory potential, phyletic distribution and evolution of ancient, intracellular small-molecule-binding domains. J. Mol. Biol., 307, 1271–1292.

    Article  CAS  PubMed  Google Scholar 

  • Anderson, L. A., McNairn, E., Leubke, T., Pau, R. N., and Boxer, D. H. (2000). ModE-dependent molybdate regulation of the molybdenum cofactor operon moa in Escherichia coli. J. Bacteriol., 182, 7035–7043.

    Article  CAS  PubMed  Google Scholar 

  • Anderson, L. A., Palmer, T., Price, N. C., Bornemann, S., Boxer, D. H., and Pau, R. N. (1997). Characterisation of the molybdenum-responsive ModE regulatory protein and its binding to the promoter region of the modABCD (molybdenum transport) operon of Escherichia coli. Eur. J. Biochem., 246, 119–126.

    Article  CAS  PubMed  Google Scholar 

  • Arnesano, F., Banci, L., Bertini, I., Cantini, F., Ciofi-Baffoni, S., Huffman, D. L., et al. (2001a). Characterization of the binding interface between the copper chaperone Atx1 and the first cytosolic domain of Ccc2 ATPase. J. Biol. Chem., 276, 41365–41376.

    Article  CAS  PubMed  Google Scholar 

  • Arnesano, F., Banci, L., Bertini, I., Huffman, D. L., and O’Halloran, T. V. (2001b). Solution structure of the Cu(I) and apo forms of the yeast metallochaperone, Atx1. Biochemistry, 40, 1528–1539.

    Article  CAS  PubMed  Google Scholar 

  • Barton, G. J. (1993). ALSCRIPT. A tool to format multiple sequence alignments. Prot. Eng., 6, 37–40.

    CAS  Google Scholar 

  • Bateman, A., Birney, E., Cerruti, E., Durbin, R., Etwiller, L., Eddy, S. R., et al. (2002). The Pfam protein families database. Nucleic Acids Res., 30, 276–280.

    Article  CAS  PubMed  Google Scholar 

  • Bohm, A., Diez, J., Diederichs, K., Welte, W., and Boos, W. (2002). Structural model of MalK, the ABC subunit of the maltose transporter of Escherichia coli: Implications for mal gene regulation, inducer exclusion, and subunit assembly. J. Biol. Chem., 277, 3708–3717.

    Article  CAS  PubMed  Google Scholar 

  • Boyd, D., Vecoli, C., Belcher, D., Jain, S., and Drysdale, J. (1985). Structural and functional relationships of human ferritin H and L chains deduced from cDNA clones. J. Biol. Chem., 260, 11755–11761.

    CAS  PubMed  Google Scholar 

  • Brennan, R. (1993). The winged-helix DNA-binding motif: another helix-turn-helix takeoff. Cell, 74, 773–776.

    Article  CAS  PubMed  Google Scholar 

  • Brennan, R., and Bruce, R. (1999). Molybdenum. In K. Peverill, L. Sparrow and D. Reuter (Eds.), Soil analysis: An interpretation manual (pp. 303–305). Collingwood, Vic., Australia: CSIRO Publishing.

    Google Scholar 

  • Chen, J. S., Toth, J., and Kasap, M. (2001). Nitrogen-fixation genes and nitrogenase activity in Clostridium acetobutylicum and Clostridium beijerinckii. J. Ind. Microbiol. Biotech., 27, 281–286.

    Article  Google Scholar 

  • Corbin, J. L., and Bulen, W. A. (1969). The isolation and identification of 2,3-dihydroxybenzioc acid and 2-N,6-N-di(2,3-hydroxybenzoyl)-L-lysine formed by iron-deficient Azotobacter vinelandii. Biochemistry, 27, 2745–2752.

    Google Scholar 

  • Corcuera, G. L., Bastidas, M., and Dubourdieu, M. (1993). Molybdenum uptake in Escherichia coli K12. J. Gen. Microbiol., 139, 1869–1875.

    Google Scholar 

  • Cornish, A. S., and Page, W. J. (1995). Production of the triacetecholate siderophore protochelin by Azotobacter vinelandii. BioMetals, 8, 332–338.

    Article  CAS  Google Scholar 

  • Cornish, A. S., and Page, W. J. (2000). Role of molybdate and other transition metals in the accumulation of protochelin by Azotobacter vinelandii. Appl. Environ. Microbiol., 66, 1580–1586.

    Article  CAS  PubMed  Google Scholar 

  • Delarbre, L., Stevenson, C. E. M., White, D. J., Mitchenall, L. A., Pau, R. N., and Lawson, D. M. (2001). Two crystal structures of the cytoplasmic molybdate-binding protein ModG suggest a novel cooperative binding mechanism and provide insights into ligand-binding specificity. J. Mol. Biol., 308, 1063–1079.

    Article  CAS  PubMed  Google Scholar 

  • Duhme, A.-K., Dauter, Z., Hider, R. C., and Pohl, S. (1996). Complexation of molybdenum by siderophores: Synthesis and structure of the double-helical cis-dioxomolybdenum(VI) complex of a bis(catecholamide) siderophore analogue. Inorg. Chem., 35, 3059–3061.

    Article  CAS  Google Scholar 

  • Duhme, A. K., Hider, R. C., and Khodr, H. H. (1997). Synthesis and iron-binding properties of protochelin, the tris(catecholamide) siderophore of Azotobacter vinelandii. Chem. Ber. 130, 969–973.

    CAS  Google Scholar 

  • Duhme, A.-K., Hider, R. C., Naldrett, M. J., and Pau, R. N. (1998). The stability of the molybdenum-azotochelin complex and its effect on siderophore production of Azotobacter vinelandii. J. Biol. Inorg. Chem., 3, 520–526.

    CAS  Google Scholar 

  • Eady, R. R. (1995). Vanadium nitrogenases of Azotobacter. Met. Ions Biol. Syst., 31, 363–405.

    CAS  PubMed  Google Scholar 

  • Einsle, O., Tezcan, F., Andrade, S., Schmid, B., Yoshida, M., Howard, J., et al. (2002). Nitrogenase MoFe-protein at 1.16 Ã… resolution: A central ligand in the FeMo-cofactor. Science, 297, 1696–1700.

    Article  CAS  PubMed  Google Scholar 

  • Elliot, B. B., and Mortenson, L. E. (1975). Transport of molybdate by Clostridium pasteurianum. J. Bacteriol., 124, 1295–1301.

    Google Scholar 

  • Frausto da Silva, J. J. R., and Williams, R. J. P. (2001). The biological chemistry of the elements — The inorganic chemistry of life, 2 ed. Oxford, UK: Clarendon Press.

    Google Scholar 

  • Glaser, J. H., and DeMoss, J. A. (1971). Phenotypic restoration by molybdate of nitrate reductase activity in chlD mutants of Escherichia coli. J. Bacteriol., 108, 854–860.

    CAS  PubMed  Google Scholar 

  • Gourley, D. G., Schüttelkopf, A. W., Anderson, L. A., Price, N. C., Boxer, D. H., and Hunter, W. N. (2001). Oxyanion binding alters conformation and quaternary structure of the c-terminal domain of the transcriptional regulator ModE. Implications for molybdate-dependent regulation, signaling, storage, and transport. J. Biol. Chem., 276, 20641–20647.

    Article  CAS  PubMed  Google Scholar 

  • Grunden, A. M., Ray, R. M., Rosentel, J. K., Healy, F. G., and Shanmugam, K. T. (1996). Repression of the Escherichia coli modABCD (molybdate transport) operon by ModE. J. Bacteriol., 178, 735–744.

    CAS  PubMed  Google Scholar 

  • Grunden, A. M., and Shanmugam, K. T. (1997). Molybdate transport and regulation in bacteria. Arch. Microbiol., 168, 345–354.

    Article  CAS  PubMed  Google Scholar 

  • Gupta, U. C. (Ed.). (1997). Molybdenum in agriculture. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Hall, D. R., Gourley, D. G., Leonard, G. A., Duke, E. M., Anderson, L. A., Boxer, D. H., et al. (1999). The high-resolution crystal structure of the molybdate-dependent transcriptional regulator (ModE) from Escherichia coli: A novel combination of domain folds. EMBO J., 18, 1435–1446.

    Article  CAS  PubMed  Google Scholar 

  • Hill, L. M. R., George, G. N., Duhme-Klair, A.-K., and Young, C. G. (2002). Solution structural studies of molybdate-nucleotide polyanions. J. Inorg. Biochem., 99, 274–283.

    Google Scholar 

  • Hille, R. (1996). The mononuclear molybdenum enzymes. Chem. Rev., 96, 2757–2816.

    Article  CAS  PubMed  Google Scholar 

  • Hinton, S. M., and Merritt, B. (1986). Purification and characterization of a molybdenumpterin-binding protein (Mop) in Clostridium pasteurianium W5. J. Bacteriol., 168, 688–693.

    CAS  PubMed  Google Scholar 

  • Hinton, S. M., and Mortenson, L. E. (1985a). Identification of molybdoproteins in Clostridium pasteurianum. J. Bacteriol., 162, 477–484.

    CAS  PubMed  Google Scholar 

  • Hinton, S. M., and Mortenson, L. E. (1985b). Regulation and order of involvement of molybdoproteins during synthesis of molybdoenzymes in Clostridium pasteurianum. J. Bacteriol., 162, 485–493.

    CAS  PubMed  Google Scholar 

  • Hinton, S. M., Slaughter, C., Eisner, W., and Fisher, T. (1987). The molybdenum-pterin binding protein is encoded by a multigene family in Clostridium pasteurianum. Gene, 54, 211–219.

    Article  CAS  PubMed  Google Scholar 

  • Hochheimer, A., Hedderich, R., and Thauer, R. K. (1998). The formylmethanofuran dehydrogenase isoenzymes in Methanobacterium wolfei and Methanobacterium thermoautotrophicum: Induction of the molybdenum isoenzyme by molybdate and constitutive synthesis of the tungsten isoenzyme. Arch. Microbiol., 170, 389–393.

    Article  CAS  PubMed  Google Scholar 

  • Hoover, T. R., Robertson, A. D., Cerny, R. L., Hayes, R. N., Imperial, V. K., Shah, V. K., et al. (1987). Identification of the V factor needed for synthesis of the iron-molybdenum cofactor of nitrogenase as homocitrate. Nature, 329, 855–857.

    Article  CAS  PubMed  Google Scholar 

  • Howarth, R. W., and Cole, J. J. (1985). Molybdenum availability, nitrogen limitation, and phytoplankton growth in natural waters. Science, 229, 653–655.

    CAS  Google Scholar 

  • Hu, Y., Rech, S., Gunsalus, R. P., and Rees, D. C. (1997). Crystal structure of the molybdate binding protein ModA. Nature Struct. Biol., 4, 703–707.

    CAS  PubMed  Google Scholar 

  • Imperial, J., Hadi, M., and Amy, N. K. (1998). Molybdate binding by ModA, the periplasmic component of the Escherichia coli mod molybdate transport system. Biochim. Biophys. Acta, 1370, 337–346.

    CAS  PubMed  Google Scholar 

  • Imperial, J., Ugalde, R. A., Shah, V. K., and Brill, W. J. (1985). Mol− mutants of Klebsiella pneumoniae requiring high levels of molybdate for nitrogenase activity. J. Bacteriol., 163, 1285–1287.

    CAS  PubMed  Google Scholar 

  • Jacobson, M. R., Brigle, K. E., Bennett, L. T., Setterquist, R. A., Wilson, M. S., Cash, V. L., et al. (1989). Physical and genetic map of the major nif gene cluster from Azotobacter vinelandii. J. Bacteriol., 171, 1017–1027.

    CAS  PubMed  Google Scholar 

  • Joerger, R. D., Jacobson, M. R., Premakumar, R., Wolfinger, E. D., and Bishop, P. E. (1989). Nucleotide sequence and mutational analysis of the structural genes (anfHDGK) for the second alternative nitrogenase from Azotobacter vinelandii. J. Bacteriol., 171, 1075–1086.

    CAS  PubMed  Google Scholar 

  • Kelley, L. A., MacCallum, R. M., and Sternberg, M. J. E. (2000). Enhanced genome annotation using structural profiles in the program 3D-PSSM. J. Mol. Biol., 299, 499–520.

    Article  CAS  PubMed  Google Scholar 

  • Khodr, H. H., Hider, R. C., and Duhme-Klair, A. K. (2002). The iron-binding properties of aminochelin, the mono(catecholamide) siderophore of Azotobacter vinelandii. J. Biol. Inorg. Chem., 7, 891–896.

    CAS  PubMed  Google Scholar 

  • Kletzin, A., and Adams, M. W. W. (1996). Tungsten in biological systems. FEMS Microbiol. Rev., 18, 5–63.

    CAS  PubMed  Google Scholar 

  • Koonin, E. V., Wolf, Y. I., and Aravind, L. (2000). Protein fold recognition using sequence profiles and its application in structural genomics. In P. Bork (Ed.), Advances protein chemistry, vol. 54 (pp. 246–275). San Diego, CA: Academic Press.

    Google Scholar 

  • Koradi, R., Billeter, M., and Wüthrich, K. (1996). Molmol: A program for display and analysis of macromolecular structures. J. Mol. Graphics, 14, 51–55.

    CAS  Google Scholar 

  • Kutsche, M., Leimkühler, S., and Klipp, W. (1996). Promoters controlling the expression of the alternative nitrogenase and the moybdenum uptake system in Rhodobacter capsulatus are activated by NtrC, independent of s54, and repressed by molybdenum. J. Bacteriol., 178, 2010–2017.

    CAS  PubMed  Google Scholar 

  • Lawson, D. M., Williams, C. E., Mitchenall, L. A., and Pau, R. N. (1998). Ligand size is a major determinant of specificity in periplasmic oxyanion-binding proteins: The 1.2 A resolution crystal structure of Azotobacter vinelandii ModA. Structure, 6, 1529–1539.

    Article  CAS  PubMed  Google Scholar 

  • Lawson, D. M., Williams, C. E., White, D. J., Choay, A. P., Mitchenall, L. A., and Pau, R. N. (1997). Protein ligands for molybdate. Specificity and charge stabilisation at anionbinding sites of periplasmic and intracellular molybdate-binding proteins of Azotobacter vinelandii. J. Chem. Soc., Dalton Trans., 3981–3984.

    Google Scholar 

  • Lee, J. H., Wendt, J. C., and Shanmugam, K. T. (1990). Identification of a new gene, molR, essential for utilization of molybdate by Escherichia coli. J. Bacteriol., 172, 2079–2087.

    CAS  PubMed  Google Scholar 

  • Lei, S., Pulakat, L., and Gavini, N. (2000). Activation of vanadium nitrogenase expression in Azotobacter vinelandii DJ54 revertant in the presence of molybdenum. FEBS Lett., 482, 149–153.

    Article  PubMed  Google Scholar 

  • Locher, K., Lee, A., and Rees, D. (2002). The E. coli BtuCD structure: A framework for ABC transporter architecture and mechanism. Science, 296, 1091–1098.

    Article  CAS  PubMed  Google Scholar 

  • Luecke, H., and Quiocho, F. A. (1990). High specificity of a phosphate transport protein determined by hydrogen bonds. Nature, 347, 402–406.

    Article  CAS  PubMed  Google Scholar 

  • Madden, M. S., Paustian, T. D., Ludden, P. W., and Shah, V. K. (1991). Effects of homocitrate, homocitrate lactone, and fluorohomocitrate on nitrogenase in nifV− mutants of Azotobacter vinelandii. J. Bacteriol., 173, 5403–5405.

    CAS  PubMed  Google Scholar 

  • Makdessi, K., Andreesen, J. R., and Pich, A. (2001). Tungstate uptake by a highly specific ABC transporter in Eubacterium acidaminophilum. J. Biol. Chem., 276, 24557–24564.

    Article  CAS  PubMed  Google Scholar 

  • Masepohl, B., Drepper, T., Paschen, A., Gross, S., Pawlowski, A., Raabe, K., et al. (2002). Regulation of nitrogen fixation in the phototrophic purple bacterium Rhodobacter capsulatus. J. Mol. Microbiol. Biotech., 4, 243–248.

    CAS  Google Scholar 

  • Maupin-Furlow, J. A., Rosentel, J. K., Lee, J. H., Deppenmeier, U., Gunsalus, R. P., and Shanmugam, K. T. (1995) Genetic analysis of the modABCD (molybdate transport) operon of Escherichia coli. J. Bacteriol., 177, 4851–4856.

    CAS  PubMed  Google Scholar 

  • Maurizi, M. R., and Li, C. H. (2001) AAA proteins: In search of a common molecular basis. EMBO Reports, 21, 980–985.

    Google Scholar 

  • McNicholas, P. M., Chiang, R. C., and Gunsalus, R. P. (1998). Anaerobic regulation of the Escherichia coli dmsABC operon requires the molybdate-responsive regulator ModE. Mol. Microbiol., 27, 197–208.

    Article  CAS  PubMed  Google Scholar 

  • McNicholas, P. M., and Gunsalus, R. P. (2002). The molybdate-responsive Escherichia coli ModE transcriptional regulator coordinates periplasmic nitrate reductase (napFDAGHBC) operon expression with nitrate and molybdate availability. J. Bacteriol., 184, 3253–3259.

    Article  CAS  PubMed  Google Scholar 

  • McNicholas, P. M., Rech, S. A., and Gunsalus, R. P. (1997). Characterization of the ModE DNA-binding sites in the control regions of modABCD and moaABCDE of Escherichia coli. Mol. Microbiol., 23, 515–524.

    Article  CAS  PubMed  Google Scholar 

  • Mouncey, N. J., Mitchenall, L. A., and Pau, R. N. (1995). Mutational analysis of genes of the mod locus involved in molybdenum transport, homeostasis, and processing in Azotobacter vinelandii. J. Bacteriol., 177, 5294–5302.

    CAS  PubMed  Google Scholar 

  • Mouncey, N. J., Mitchenall, L. A., and Pau, R. N. (1996). The modE gene product mediates molybdenum-dependent expression of genes for the high-affinity molybdate transporter and modG in Azotobacter vinelandii. Microbiol., 142, 1997–2004.

    CAS  Google Scholar 

  • Mukund, S., and Adams, M. W. W. (1996). Molybdenum and vanadium do not replace tungsten in the catalytically active forms of the three tungstoenzymes in the hyperthermophilic archaeon Pyrococcus furiosus. J. Bacteriol., 178, 163–167.

    CAS  PubMed  Google Scholar 

  • Murzin, A. G. (1993). OB(oligonucleotide oligosaccharide binding)-fold — common structural and functional solution for nonhomologous sequences. EMBO J., 12, 861–867.

    CAS  PubMed  Google Scholar 

  • Neubauer, H., Pantel, I., Lindgren, P. E., and Gotz, F. (1999). Characterization of the molybdate transport system ModABC of Staphylococcus carnosus. Arch. Microbiol., 172, 109–115.

    Article  CAS  PubMed  Google Scholar 

  • O’Halloran, T. V., and Culotta, V. C. (2000). Metallochaperones, an intracellular shuttle service for metal ions. J. Biol. Chem., 275, 25057–25060.

    Google Scholar 

  • Outten, C. E., and O’Halloran, T. V. (2001). Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science, 292, 2488–2492.

    Article  CAS  PubMed  Google Scholar 

  • Page, W. J., and von Tigerstrom, M. (1988). Aminochelin, a catecholamine siderophore produced by Azotobacter vinelandii. J. Gen. Microbiol., 134, 453–460.

    CAS  Google Scholar 

  • Page, W. J., and von Tigerstrom, M. (1982). Iron-and molybdenum-repressible outer membrane proteins in competent Azotobacter vinelandii. J. Bacteriol., 151, 237–242.

    CAS  PubMed  Google Scholar 

  • Pardee, A. B. (1966) Purification and properties of a sulfate-binding protein from Salmonella typhimurium. J. Biol. Chem., 241, 5886–5892.

    CAS  PubMed  Google Scholar 

  • Pau, R. N., Klipp, W., and Leimkühler, S. (1997). Molybenum transport, processing and gene regulation. In G. Winkelmann and C. J. Carrano (Eds.), Transition metals in microbial metabolism (pp. 217–234). Amsterdam: Harwood Academic Publishers.

    Google Scholar 

  • Paulsen, D. M., Paerl, H. W., and Bishop, P. E. (1991). Evidence that molybdenum-dependent nitrogen fixation is not limited by high sulfate concentrations in marine environments. Limnol. Oceanog., 36, 1325–1334.

    CAS  Google Scholar 

  • Pflugarth, J. W., and Quiocho, F. A. (1985). Sulphate sequestered in sulphate-binding protein of Salmonella typhimurium is bound solely by hydrogen bonds. Nature, 314, 257–260.

    Google Scholar 

  • Pope, M. T., Still, E. R., and Williams, J. P. (1980). A comparison between the chemistry and biochemistry of molybdenum and related elements. In M. Coughlan (Ed.), Molybdenum and molybdenum-containing enzymes (pp. 3–40). Oxford: Pergamon Press.

    Google Scholar 

  • Premakumar, R., Jacobitz, S., Ricke, S. C., and Bishop, P. E. (1996). Phenotypic characterization of a tungstate-tolerant mutant of Azotobacter vinelandii. J. Bacteriol., 178, 691–696.

    CAS  PubMed  Google Scholar 

  • Quiocho, F. A., and Ledvinda, P. S. (1996). Atomic structure and specificity of bacterial periplasmic receptors for active transport and chemotaxis: variation of common themes. Mol. Microbiol., 20, 17–25.

    CAS  PubMed  Google Scholar 

  • Rech, S., Wolin, C., and Gunsalus, R. P. (1996). Properties of the periplasmic ModA molybdate-binding protein of Escherichia coli. J. Biol. Chem., 271, 2557–2562.

    CAS  PubMed  Google Scholar 

  • Robson, R. L., Eady, R. R., Richardson, T. H., Miller, R. W., Hawkins, M., and Postgate, J. R. (1986). The alternative nitrogenase of Azotobacter chroococcum is a vanadium enzyme. Nature, 322, 388–390.

    Article  CAS  Google Scholar 

  • Rosentel, J. K., Healy, F., Maupin-Furlow, J. A., Lee, J. H., and Shanmugam, K. T. (1995). Molybdate and regulation of mod (molybdate transport), fdhF, and hyc (formate hydrogen lyase) operons in Escherichia coli. J. Bacteriol., 177, 4857–4864.

    CAS  PubMed  Google Scholar 

  • Schneider, K., Müller, A., Johannes, K.-U., Diemann, E., and Kottmann, J. (1991). Selective removal of molybdenum traces from growth media of N2-fixing bacteria. Anal. Biochem., 193, 292–298.

    Article  CAS  PubMed  Google Scholar 

  • Schüttelkopf, A. W., Boxer, D. H., and Hunter, W. N. (2003). Crystal structure of activated ModE reveals conformational changes involving both oxyanion and DNA-binding domains. J. Mol. Biol., 326, 761–767.

    Article  PubMed  Google Scholar 

  • Schüttelkopf, A. W., Harrison, J. A., Boxer, D. H., and Hunter, W. N. (2002). Passive acquisition of ligand by the MopII molbindin from Clostridium pasteurianum: Structures of apo and oxyanion-bound forms. J. Biol. Chem., 277, 15013–15020.

    PubMed  Google Scholar 

  • Scott, D., and Amy, N. K. (1989). Molybdenum accumulation in chlD mutants of Escherichia coli. J. Bacteriol., 171, 1284–1287.

    CAS  PubMed  Google Scholar 

  • Siemann, S., Schneider, K., Oley, M., and Müller, A. (2003). Characterization of a tungsten-substituted nitrogenase isolated from Rhodobacter capsulatus. Biochemistry 42, 3846–3857.

    CAS  PubMed  Google Scholar 

  • Solomon, P. S., Shaw, A. L., Young, M. D., Leimkühler, S., Hanson, G. R., Klipp, W. et al. (2000). Molybdate-dependent expression of dimethylsulfoxide reductase in Rhodobacter capsulatus. FEMS Microbiol. Lett., 190, 203–208.

    CAS  PubMed  Google Scholar 

  • Sperl, G. T., and DeMoss, J. A. (1975). chlD gene function in molybdate activation of nitrate reductase. J. Bacteriol., 122, 1230–1238.

    CAS  PubMed  Google Scholar 

  • Stewart, L. J., Bailey, S., Bennett, B., Charnock, J. M., Garner, C. D., and McAlpine, A. S. (2000). Dimethylsulfoxide reductase: An enzyme capable of catalysis with either molybdenum or tungsten at the active site. J. Mol. Biol. 299, 593–600.

    CAS  PubMed  Google Scholar 

  • Stewart, V. (1993). Nitrate regulation of anaerobic respiratory gene expression in Escherichia coli. Mol. Microbiol., 9, 425–434.

    CAS  PubMed  Google Scholar 

  • Stiefel, E. I. (1993). Molybdenum enzymes, cofactors and chemistry. In E. I. Stiefel, D. Coucouvanis and W. E. Newton (Eds.), Molybdenum enzymes, cofactors and model systems (pp. 1–18). Washington DC: American Chemical Society.

    Google Scholar 

  • Suttle, N. F. (1991). The interactions between copper, molybdenum, and sulphur in ruminant nutrition. Annu. Rev. Nutr., 11, 121–140.

    CAS  PubMed  Google Scholar 

  • Thiel, T., Pratte, B., and Zahalak, M. (2002). Transport of molybdate in the cyanobacterium Anabaena variabilis ATCC 29413. Arch. Microbiol., 179, 50–56.

    Article  CAS  PubMed  Google Scholar 

  • Trautwein, T., Krauss, F., Lottspeich, F., and Simon, H. (1994). The (2R)-hydroxycarboxylate-viologen-oxyreductase from Proteus vulagris is a molybdenum-containing iron-sulfur protein. Eur. J. Biochem., 222, 1025–1032.

    Article  CAS  PubMed  Google Scholar 

  • Wagner, U. G., Stupperich, E., and Kratky, C. (2000). Structure of the molybdate/tungstate binding protein Mop from Sporomusa ovata. Structure Fold Des., 8, 1127–1136.

    CAS  PubMed  Google Scholar 

  • Walkenhorst, H. M., Hemschemeier, S. K., and Eichenlaub, R. (1995). Molecular analysis of the molybdate uptake operon, modABCD, of Escherichia coli and modR, a regulatory gene. Microbiol. Res., 150, 347–361.

    CAS  PubMed  Google Scholar 

  • Wang, G., Angermüller, S., and Klipp, W. (1993). Characterization of Rhodobacter capsulatus genes encoding a molybdenum transport system and putative molybdenumpterin-binding proteins. J. Bacteriol., 175, 3031–3042.

    CAS  PubMed  Google Scholar 

  • Wang, S. Z., Chen, J. S., and Johnson, J. L. (1990). A nitrogen-fixation gene (nifC) in Clostridium pasteurianum with sequence similarity to chlJ of Escherichia coli. Biochem. Biophys. Res. Commun., 169, 1122–1128.

    CAS  PubMed  Google Scholar 

  • Willsky, G. R. (1990). Vanadium in the biosphere. In N. D. Chasteen (Ed.), Vanadium in biological systems (pp. 1–24). Amsterdam: Kluwer Academic Publishers.

    Google Scholar 

  • Zierenberg, R. A., Adams, M. W. W., and Arp, A. J. (2000). Life in extreme environments: Hydrothermal vents. Proc. Natl. Acad. Sci. U.S.A., 97, 12961–12962.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Pau, R.N. (2004). Molybdenum Uptake and Homeostasis. In: Klipp, W., Masepohl, B., Gallon, J.R., Newton, W.E. (eds) Genetics and Regulation of Nitrogen Fixation in Free-Living Bacteria. Nitrogen Fixation: Origins, Applications, and Research Progress, vol 2. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2179-8_10

Download citation

Publish with us

Policies and ethics