Skip to main content

Small Metal Clusters: AB Initio Calculated Bare Clusters and Models Within Fullerene Cages

  • Conference paper
Frontiers of Multifunctional Integrated Nanosystems

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 152))

Abstract

Several models of small metal clusters Agn and Cun (n<5) within the fullerene molecule C60 were constructed to estimate their possible stability and properties. With ab initio SCF MOLCAO method the bare metal clusters Agn, Cun and the structures C60-Mn with n=1,2,4 were calculated. Comparison of binding energies of the clusters shows that monoatomic C60-M are stable both for silver and copper, while in the case of di- and four-atomic C60-Mn the structures with copper atoms are much more favorable than those with silver. An embedding of metal clusters into C60 molecules is accompanied by its little distortion, but large distortion of the clusters does not correspond to stable structures. Stable structures reveal the effect of charge transfer from the fullerene cage to metal atoms resulting in positive charge for metal clusters. The models C60-Cu2 and C60-Cu4 with tetrahedron Cu4 are proposed for search as possible candidates in experimental metal-fullerene systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Martin, T.P. (2001) “Experimental aspects of metal clusters”, Atomic clusters and nanoparticles — a NATO ASI, Les houses, Session LXXIII, 2000 (Springer Verlag, Berlin), pp. 1–28.

    Google Scholar 

  2. Clusters of Atoms and Molecules I. Theory, Experiment, and Clusters of Atoms (1994), Ed. H. Haberland, Springer-Verlag, Berlin.

    Google Scholar 

  3. Wheltner, W. jr., and Van Zee, R. (1989), “Carbon Molecules, ions, and clusters”, Chem., Rev. V. 98, pp. 1713–1747.

    Article  Google Scholar 

  4. Forro, L. and Mihaly, L. (2001), “Electronic properties of doped fullerenes”, Rep. Prog. Phys., V. 64, pp. 649–699.

    Article  ADS  Google Scholar 

  5. Reshef, T. (1995), “Doped and heteroatom-containing fullerene-like structures and nanotubes”, Adv. Mater., V. 7, pp. 965–995.

    Article  Google Scholar 

  6. Zimmerman, U., Burkhardt, A., Malinowski, N., Naher, U. and Martin, T.P. (1994), “Quantum chemical study of lithium-C60 clusters”, J. Chem. Phys., V. 101, pp. 2244–2249.

    Article  ADS  Google Scholar 

  7. Morse, M.G. (1986), “Clusters of transition-metal atoms”, Chem. Rev., V. 86, pp. 1049–1109.

    Article  Google Scholar 

  8. Henglein, A. (1993), “Physicochemical properties of small metal particles in solution: ‘microelectrode’ reactions, chemisorption, composite metal particles, and the atom-to-atom transition”, J. Phys. Chem. V. 97, pp. 5457–5471.

    Article  Google Scholar 

  9. de Heer, W.A. (1993), “The physics of simple metal clusters: experimental aspects and simple models”, Rev. Mod. Phys. V. 65, pp. 611–676.

    Article  ADS  Google Scholar 

  10. Ozin, G.A. and Mitchell S.A. (1983), “Ligand-free metal clusters”, Angew. Chem. Int. Ed. Engl., V. 22, pp. 674–693.

    Article  Google Scholar 

  11. Knickelbein, M.B. (1999), “The spectroscopy and photophysics of isolated transition-metal clusters”, Phil. Mag. B, V. 79, pp. 1379–1400.

    Article  ADS  Google Scholar 

  12. Klabunde, K.J. (1980), “Chemistry of free atoms and particles”, Academic Press, New York, 238 p.

    Google Scholar 

  13. Dubov., P.L., Korolkov, D.V., and Petranovskii V.P. (1995), “Clusters and matrix-isolated cluster superstructures” (in Russian), St.-Peterburg, St.-Peterburg Univ. Publ., 191p.

    Google Scholar 

  14. Pomogailo, A.D., Rozenberg, A.S., and Uflyand, I.E. (2000), “Metal nanoparticles in polymers” (in Russian), Moscow, Khimia, 672p.

    Google Scholar 

  15. Sun, T. and Seff, K. (1994), “Silver clusters and chemistry in zeolites”, Chem. Rev. V. 94, pp. 857–870.

    Article  Google Scholar 

  16. Ozin, G.A., Kuperman, A., and Stein, A. (1989), “Advanced Zeolite Material Science”, Angew. Chem. Int. Ed. Engl. V. 28, pp. 359–376.

    Article  Google Scholar 

  17. Bogdanchikova, N.E., Petranovskii, V.P., Machorro, R.M., Sugi, Y., Soto, V.M.G., Fuentes, S.M. (1999), “Stability of silver clusters in mordenites with different SiO2/Al2O3 molar ratio”, Appl. Surf. Sci., V. 150, pp. 58–64.

    Article  ADS  Google Scholar 

  18. Chu, A., Cook, J., Heesom, R.J.R., Hutchison, J.L., Green, M.L.H., and Sloan, J. (1996), “Filling of carbon nanotubes with silver, gold, and gold chloride”, Chem. Mater., V. 8, pp. 2751–2754.

    Article  Google Scholar 

  19. Harrison, R. J., Nichols, J. A., Straatsma, T. P., Dupuis M. et al., “NWChem, A Computational Chemistry Package for Parallel Computers, Version 4.1” (2002), Pacific Northwest National Laboratory, Richland, Washington 99352-0999, USA.

    Google Scholar 

  20. Murry, R.L., Colt, J.R., and Scuseria, G.E. (1993), “How accurate are molecular mechanics predictions for fullerenes? A benchmark comparison with Hartree-Fock self-consistent field results”, J. Phys. Chem., V. 97, pp. 4954–4959.

    Article  Google Scholar 

  21. Andreoni, W. (1994), “Physics and chemistry of fullerenes from ab initio molecular dynamics”, Physics and Chemistry of the Fullerenes, Ed. By K. Prassides, NATO ASI Series, V. 443, Kluwer Academic Publishers, Dordrecht, 1994., pp. 169–182.

    Google Scholar 

  22. Poteau, R., Heully, J.-L., and Spiegelmann, F. (1997), “Structure, stability, and vibrational properties of small silver clusters”, Z. Phys. D, V. 40, pp. 479–482.

    Article  ADS  Google Scholar 

  23. Balasubramanian, K. (1989), “Electronic structure of coinage metal clusters”, J. Mol. Struct. THEOCHEM, V. 202, pp. 291–313.

    Article  Google Scholar 

  24. Balasubramanian, K. and Feng, P.Y. (1990), “Geometries and energy separations of low-lying electronic states of Ag4 and Cu4”, J. Phys. Chem., V. 94, pp. 1536–1544.

    Article  Google Scholar 

  25. Jackson, K.A. (1993), “First-principles study of the structural and electronic properties of Cu clusters”, Phys. Rev. B, V. 47, pp. 9715–9722.

    Article  ADS  Google Scholar 

  26. Alonso, J.A. (2000), “Electronic and atomic structure, and magnetism of transition-metal clusters”, Chem. Rev. V. 100, pp. 637–677.

    Article  Google Scholar 

  27. Calaminici, P., Koester, A.M., Russo, N., and Salahub, D.R. (1996), “A density functional study of small copper clusters: Cun (n≤5)”, J. Chem. Phys., V. 105, pp. 9546–9556.

    Article  ADS  Google Scholar 

  28. Fournier, R. (2001), “Theoretical study of the structure of silver clusters”, J. Chem. Phys. V. 115, pp. 2165–2177.

    Article  ADS  Google Scholar 

  29. Bauschlicher, Ch.W. jr., Langhoff, S. R., and Partridge H. (1990), “Theoretical study of the homonuclear tetramers and pentamers of the group IB metals (Cu, Ag, and Au)”, J. Chem. Phys. V. 93, pp. 8133–8137.

    Article  ADS  Google Scholar 

  30. Musolino, V., Selloni, A., and Car, R. (1998), “First principles study of adsorbed Cu4 (n=1–4) microclusters on MgO(100): structural and electronic properties”, J. Chem. Phys., v. 108, pp. 5044–5054.

    Article  ADS  Google Scholar 

  31. Lammers, U. and Borstel, G. (1994), “Electronic and atomic structure of copper clusters”, Phys. Rev. B, V. 49, pp. 17360–17377.

    Article  ADS  Google Scholar 

  32. Jeung, G.H., Pelissier, M., and Barthelat, J.C. (1983), “Stability of small copper clusters: Cu3 and Cu4”, Chem. Phys. Lett., V. 97, pp. 369–372.

    Article  ADS  Google Scholar 

  33. Wertheim, G.K. and Buchanan, D.N.E. (1994), “Interfacial reaction of C60 with silver”, Phys. Rev. B, V. 50, pp. 11070–11073.

    Article  ADS  Google Scholar 

  34. Ton-That, C., Shard, A.G., Egger, S., Dhanak, V.R., and Welland, M.E. (2003), “Modulations of valence-band photoemission spectrum from C60 monolayer on Ag(111)”, Phys. Rev. B, V. 67, pp. 155415-1–6.

    Article  ADS  Google Scholar 

  35. Reddic, J.E., Robinson, J.C., and Duncan, M.A., (1997), “Growth and photodissociation of Agx-C60 cation complexes”, Chem. Phys. Lett. V. 279, pp. 203–208.

    Article  ADS  Google Scholar 

  36. Sun, N., Guo, Zh.-X., Dai, L., Zhu, D., Wang, Y., and Song, Y. (2002), “Hexakisadduct C60-Ag nanocomposite: fabrication and optical limiting effect”, Chem. Phys. Lett. V. 356, pp. 175–180.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this paper

Cite this paper

Gurin, V.S. (2004). Small Metal Clusters: AB Initio Calculated Bare Clusters and Models Within Fullerene Cages. In: Buzaneva, E., Scharff, P. (eds) Frontiers of Multifunctional Integrated Nanosystems. NATO Science Series II: Mathematics, Physics and Chemistry, vol 152. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2173-9_5

Download citation

Publish with us

Policies and ethics