Skip to main content

Nano-Bio Electronic Devices Based on DNA Bases and Proteins

  • Conference paper
  • 903 Accesses

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 152))

Abstract

A key challenge of the current research in nanoelectronics is the realization of biomolecular devices. The biomolecules have specific functionalies that can be exploited for the implementation of electronic and optoelectronic devices. Different nanotechnological strategies have been pursued to implement the biomolecular devices, following a bottom-up or a topdown approach depending on the used biomolecule and on its functionality. In this paper we present our results on the implementation of nano-biomolecular devices based on modified DNA nucleosides and metalloproteins.

The first kind of devices is based on a DNA base, the guanosine, which is engineered in two different modified forms: the lipophilic deoxyguanosine derivative I, and the lipophilic 8-oxodeoxiguanosine.

These biomolecules show strong electron-donor properties and internal dipole. Moreover these modified nucleosides exhibit self-assembly and self-recognition properties, resulting in the formation of two-dimensional ordered supramolecular structures in the solid state. The aggregates show a clear semiconductor behaviour with blue band-gap and coherent band transport. These are used, in combination with nanopatterned metallic contacts separated by narrow gaps between 200nm and 30 nm, to fabricate novel biomolecular electronic devices with excellent photodiode behaviour and metal/semiconductor/metal characteristics at room temperature. A three terminal device, like field effect transistor based on a deoxyguanosine derivative (a DNA base), is demonstrated.

A totally different approach is followed for the implementation of devices based on proteins. The use of electron-transfer proteins, such as the blue copper protein azurin (Az), is particularly attractive because of its natural redox properties and their self assembly capabilities. Our results about the fabrication, characterization and modelling of devices based on this redox protein are presented.. The charge transfer process in protein devices depends on their redox centers (the metal atom) and their orientation in the solid state, achieved through different immobilization methods. A biomolecular electron rectifier is demonstrated by interconnecting two gold nanoelectrodes with an azurin monolayer immobilized on SiO2. The device exhibits a clear rectifying behavior with discrete current steps in the positive wing of the current-voltage curve, which are ascribed to resonant tunnelling through the redox active center. The basic properties of Azurin-based three terminal devices are also reported. A prototype of biomolecular transistor in the solid state and operating in air, based on such class of proteins is presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Joachim, J. K. Gimzewski, A. Aviram, Nature 408, 541 (2000)

    Article  ADS  Google Scholar 

  2. R.M. Metzger, B. Chen, U. Hopfner, M.V. Lakshmikantham, D. Vuillaume, T. Kawai, X. Wu, H. Tachibana, T.V. Hughes, H. Sakurai, J.W. Baldwin, C. Hosch, M.P. Cava, L. Brehmer and G.J. Ashwell, J.Am.Chem.Soc. 119, 10455–10466 (1997)

    Article  Google Scholar 

  3. M.A. Reed, J. Chen, A.M. Rawlett, D.W. Price and J.M. Tour, Appl. Phys. Lett. 78, 3735(2001)

    Article  ADS  Google Scholar 

  4. S. Roth and C. Joachim, “Atomic and molecular wires”, Kluwer, Dordrecht, Germany(1997)

    Google Scholar 

  5. K.S. Kwok and J. Ellenbogen, Materials Today, Feb. 2002, p.28

    Google Scholar 

  6. R Bashir, Superlattices and Microstructures 29(1), 1–16 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  7. J. Jortner and M. Ratner (ed.), “Molecular electronics”, Blackwell, Oxford, UK (1997)

    Google Scholar 

  8. W. Göpel, Biosensors and Bioelectronics 10, 35–59 (1995)

    Article  Google Scholar 

  9. G. Gottarelli, S. Masiero, E. Mezzina, G.P. Spada, P. Mariani and M. Recanatini, Helv.Chim.Acta 81, 2078 (1998)

    Article  Google Scholar 

  10. G. Gottarelli, S. Masiero, E. Mezzina, S. Pieraccini, J.P. Rabe, P. Samorì and G.P. Spada, Chem.Eur.J. 6, 3242 (2000)

    Article  Google Scholar 

  11. R. Cingolani, R. Rinaldi, G. Maruccio and A. Biasco, Physica E13, 1229; R.Rinaldi, E.Branca, R.Cingolani, R.Di Felice, A.Calzolai, E.Molinari, S.Masiero, G.P.Spada, G.Gottarelli, A.Garbesi, “Biomolecular electronic devices based on deoxiguanosine nanocrystals”, Annals of the New York Academy of Science 960, Molecular Electronics II, 184 (2002)

    ADS  Google Scholar 

  12. R. Rinaldi, E. Branca, R. Cingolani, S. Masiero, G.P. Spada, G. Gottarelli, Appl. Phys. Lett. 78, 3541 (2001)

    Article  ADS  Google Scholar 

  13. R. Rinaldi, G. Maruccio, A. Biasco, V. Arima, R. Cingolani, T. Giorgi, S. Masiero, G.P. Spada and G. Gottarelli, Nanotechnology 13, 398–403 (2002)

    Article  ADS  Google Scholar 

  14. G. Maruccio, P. Visconti, V. Arima, S. D’Amico, A. Biasco, E. D’Amone, R. Cingolani, R. Rinaldi, S. Masiero, T. Giorgi, G. Gottarelli, Nanoletters, in press.

    Google Scholar 

  15. R. Rinaldi, A. Biasco, G. Maruccio, R. Cingolani, D. Alliata, L. Andolfi, P. Facci, F. De Rienzo, R. Di Felice, E. Molinari, “Solid-State Molecular Rectifier based on self-assembled metalloproteins”, Adv. Mater. 20, 1453 (2002)

    Article  Google Scholar 

  16. E. T. Adman, in Topics in Molecular and Structural Biology: Metalloporteins (Ed: P. M. Harrison), Chemie Verlag, Weinheim 1985.

    Google Scholar 

  17. R. Rinaldi, A. Biasco, G. Maruccio, V. Arima, P. Visconti, R. Cingolani, P. Facci, F. De Rienzo, R. DiFelice, E. Molinari, M.Ph Verbeet, G.W. Canters, Appl. Phys. Lett. 82, 472 (2003)

    Article  ADS  Google Scholar 

  18. R. Rinaldi, G. Maruccio, A. Biasco, P. Visconti, V. Arima, R. Cingolani, Annals of the New York Academy of Science, Molecular Electronics III, in press (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this paper

Cite this paper

Rinaldi, R. et al. (2004). Nano-Bio Electronic Devices Based on DNA Bases and Proteins. In: Buzaneva, E., Scharff, P. (eds) Frontiers of Multifunctional Integrated Nanosystems. NATO Science Series II: Mathematics, Physics and Chemistry, vol 152. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2173-9_22

Download citation

Publish with us

Policies and ethics