Skip to main content

Quasiclassical Trajectory Studies of the Dynamics of Bimolecular Reactions of Vibrationally Highly Excited Molecules

  • Conference paper
Theory of Chemical Reaction Dynamics

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 145))

  • 1238 Accesses

Abstract

Excitation functions from quasiclassical trajectory calculations on the H + H2O → OH + H2, H + HF → F + H2 and H + H’F → H’ + HF reactions indicate a different behavior at low and high low and high vibrational excitation of the breaking bond. All these reactions are activated when the reactant tri- or diatomic molecule is in vibrational ground state or in low vibrationally excited states. i.e. there is a nonzero threshold energy below which there is no reaction. In contrast, at high stretch excited states capture-type behavior is observed, i.e. at low translational energies the reactive cross section diverges. The latter induces extreme vibrational enhancement of the thermal rate consistent with the experiments. The results indicate that the speed-up observed at high vibrational excitation is beyond the applicability of Polanyi’s rules; instead, it can be interpreted in terms of an attractive potential acting on the attacking H atom when it approaches t he reactant with a stretched X-H bond.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Holbrook, K. A.; Pilling, M. J.; Robertson, S. H. (1996) Unimolecular Reactions, John Wiley & Sons, Chichester

    Google Scholar 

  2. Forst, W. (1973) Theory of Unimolecular Reactions, Academic Press, New York

    Google Scholar 

  3. Oref, I. and Tardy, D.C. (1990) Energy transfer in highly excited large polyatomic molecules, Chem. Rev., 90, 1407–1445

    Article  CAS  Google Scholar 

  4. Gilbert, R. G.; Smith, S. C. (1990) Theory of Unimolecular and Recombination Reactions; Blackwell Scientific Publications, Oxford

    Google Scholar 

  5. Hippler, H.; Troe, J. (1989) In Bimolecular Reactions; Baggott, J. E., Ashfold, M. N. R., Eds.; The Chemical Society: London.

    Google Scholar 

  6. (a) Sinha A. (1990) Bimolecular reaction of a local mode vibrational state: hydrogen atom + water (4vOH) → hydroxyl(v,J) + hydrogen, J. Phys. Chem. 94, 4391–4393 (b) Sinha, A. Hsiao M. C. and Crim F. F. (1991) Controlling bimolecular reactions: Mode and bond selected reaction of water with hydrogen atoms, J. Chem. Phys. 94, 4928–4935; (c) Hsiao M. C., Sinha A. and Crim F. F. (1991) Energy disposal in the vibrational-state-and bond-selected reaction of water with hydrogen atoms, J. Phys. Chem. 95, 8263–8267; (d) Metz R. B., Thoemke J. D., Pfeiffer J. M. and Crim F. F. (1993) Selectively breaking either bond in the bimolecular reaction of HOD with hydrogen atoms, J. Chem. Phys. 99, 1744–1751; (f) Thoemke J. D., Pfeiffer J. M., Metz R. B. and Crim F. F. (1995) Mode-and Bond-Selective Reactions of Chlorine Atoms with Highly Vibrationally Excited H2O and HOD, J. Phys. Chem. 99, 13748–13754

    Article  CAS  Google Scholar 

  7. (a) Bronikowski M. J., Simpson W. R. and Zare R. N. (1991) Bond-specific chemistry: 0D:OH product ratios for the reactions H + HOD(100) and H +HOD(001), J. Chem. Phys. 95, 8647–8648 (b) Bronikowski M. J., Simpson W. R. and Zare R. N. (1993) Effect of reagent vibration on the hydrogen atom + water-d reaction: an example of bond-specific chemistry J. Phys. Chem. 97, 2194–2203 (c) Bronikowski M. J., Simpson W. R. and Zare R. N. (1993) Comparison of reagent stretch vs. bend excitation in the hydrogen atom + water-d2 reaction: an example of mode-selective chemistry J. Phys. Chem. 97, 2204–2208 (d ) Adelman D. E., Filseth S. V. and Zare R. N. (1993) Integral rate constant measurements of the reaction H +D2O + HD(v’,j’)+OD, J. Chem. Phys. 98, 4636–4643.

    Article  CAS  Google Scholar 

  8. Hawthorne G., Sharkey P. and Smith I.W.M. (1998) Rate coefficients for the reaction and relaxation of vibrationally excited H2O|04> with H atoms and H2O J. Chem. Phys. 108, 4693–4696.

    Article  CAS  Google Scholar 

  9. Barnes P. W., Sharkey P., Sims I. R. and Smith I. W. M. (1999) Rate coefficients for the reaction and relaxation of in H2O specific vibrational states with H atoms and H2O Faraday Discuss. 113, 167–180.

    CAS  Google Scholar 

  10. Schatz G.C., Wu G., Lendvay G., Fang D.-C. and Harding L. B. (1999) Reaction of H with highly vibrationally excited water: activated or not?, Faraday Discuss. 113, 151–165.

    Article  CAS  Google Scholar 

  11. (a) Wu G., Schatz G.C., Lendvay G., Fang D.C. and Harding L.B. (2000) A new potential energy surface and quasiclassical trajectory study of H + H2O → OH + H2, J. Chem. Phys. 113, 3150–3161; (b) ibid. (2000) Erratum, J. Chem. Phys. 113, 7712.

    CAS  Google Scholar 

  12. Zhang D. H., Yang M., Collins M. A. and Lee S.-Y. (2003) Reaction Dynamics of Polyatomic Systems: From A + BCD → AB + CD to X + YCZ3 → XY + CZ3, This volume.

    Google Scholar 

  13. Mielke S. L., Lynch G. C., Truhlar D. G. and Schwenke D. W. (1993) A more accurate potential energy surface and quantum mechanical cross section calculations for the F+ H2 reaction, Chem. Phys. Lett. 213, 10–16; Erratum (1994) 217, 173.

    Article  CAS  Google Scholar 

  14. Polanyi J.C. (1972) Some Concepts in Reaction Dynamics, Acc. Chem. Res. 5, 161–168.

    Article  CAS  Google Scholar 

  15. Kuntz P.J., Nemeth E.M., Polanyi J.C., Rosner S.D. and Young C.E. (1966) Energy distribution among products of exothermic reactions. II. Repulsive, mixed, and attractive energy release, J. Chem. Phys. 44, 1168–1184.

    Article  CAS  Google Scholar 

  16. Smith, I.W.M. (1980) Kinetics and Dynamics of Elementary Gas Reactions, Butterworths, London.

    Google Scholar 

  17. Hase W.L., Duchovic R.J., Lu D.-H., Swamy K.N., Vande Linde S.R. and Wolf R.J. (1988) VENUS, A General Chemical Dynamics Computer Program.

    Google Scholar 

  18. (a) Walch, S.P. and Dunning, T.H. (1980) A theoretical study of the potential energy surface for OH + H2, J. Chem. Phys. 72, 1303–1311; (b) Schatz, G.C. (1981) A quasiclassical trajectory study of reagent vibrational excitation effects in the OH + H2→ H2O+Hreaction, J.Chem. Phys. 74, 1133–1139; (c) Elgersma, H. and Schatz, G.C. (1981) A quasiclassical trajectory study of mode specific reaction rate enhancements in H + H2O(v1, v2, v3) → OH + H2, Intl. J. Quantum Chem., Quantum Chem. Symp. 15, 611–619.

    CAS  Google Scholar 

  19. G. Ochoa de Aspuru and D. C. Clary (1998) New potential energy function for four-atom reactions. Application to OH+H2, J. Phys. Chem. A., 102, 9631–9637.

    CAS  Google Scholar 

  20. A. Laganà A., Ochoa de Aspuru G. and E. Garcia (1998) The largest angle generalization of the rotating bond order potential: Three different atom reactions, J. Chem. Phys. 108, 3886–3896.

    Google Scholar 

  21. (a) Yang, M., Zhang, D.H., Collins, M.A. and Lee, S.-Y. (2001) Quantum dynamics on new potential energy surfaces for the H2 + OH → H2O + H reaction, J. Chem. Phys. 114, 4759–4762; (b) ibid. (2001) Ab initio potential energy surfaces for the reactions OH + H2 ↔ H2O + H, J. Chem. Phys. 115, 174–178.

    CAS  Google Scholar 

  22. see e.g. Clary D.C. (1995) Reactions of strongly polar ions with molecules, Chem. Phys. Lett. 232, 267–272 and references therein.

    Article  CAS  Google Scholar 

  23. Barnes P.W., Sims I.R., Smith I.W.M., Lendvay G. and Schatz G.C. (2001) The branching ratio between reaction and relaxation in the removal of H2O from its |04>vibrational state in collisions with H atoms, J. Chem. Phys. 115, 4586–4592.

    Article  CAS  Google Scholar 

  24. Stark K. and Werner H.-J. (1996) An accurate multireference configuration interaction calculation of the potential energy surface for the F+H2→HF+H reaction, J. Chem. Phys. 104, 6515–6530.

    Article  CAS  Google Scholar 

  25. see e.g. Pollak E. (1981) A classical determination of vibrationally adiabatic barriers and wells of a collinear potential energy surface, J. Chem. Phys. 74, 5586–5594 and references therein.

    CAS  Google Scholar 

  26. Garrett B. C. and Truhlar D. G. (1979) Generalized Transition State Theory. Quantum Effects for Collinear Reactions of Hydrogen Molecules and Isotopically Substituted Hydrogen Molecules, J. Phys. Chem. 79, 1079–1112.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this paper

Cite this paper

Bene, E., Lendvay, G., PÓta, G. (2004). Quasiclassical Trajectory Studies of the Dynamics of Bimolecular Reactions of Vibrationally Highly Excited Molecules. In: Lagana, A., Lendvay, G. (eds) Theory of Chemical Reaction Dynamics. NATO Science Series II: Mathematics, Physics and Chemistry, vol 145. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2165-8_16

Download citation

Publish with us

Policies and ethics