Skip to main content

Theoretical Methods for Modeling Chemical Processes on Semiconductor Surfaces

  • Chapter
Computational Materials Chemistry
  • 1068 Accesses

Summary

As a result of the advancements in algorithms and the huge increase in speed of computers over the past decade, electronic structure calculations have evolved into a valuable tool for characterizing surface species and for elucidating the pathways for their formation and reactivity. It is also now possible to calculate, including electric field effects, STM images for surface structures. To date the calculation of such images has been dominated by density functional methods, primarily because the computational cost of accurate wave-function based calculations using either realistic cluster or slab models would be prohibitive.

DFT calculations have proven especially valuable for elucidating chemical processes on silicon and other semiconductor surfaces. However, it is also clear that some of the systems to which DFT methods have been applied have large non-dynamical correlation effects, which may not be properly handled by the current generation of Kohn-Sham-based density functionals. For example, our CASSCF calculations on the Si(001)/acetylene system reveal that at some geometries there is extensive configuration mixing.86 This, in turn, could signal problems for DFT calculations on these systems. Some of these problem systems can be addressed using ONIOM or other “layering” methods, treating the primary region of interest with a CASMP2 or other multireference-based method, and treating the secondary region by a lower level of electronic structure theory or by use of a molecular mechanics method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. E. Schlier and H. E. Farnsworth, J. Chem. Phys. 30, 917 (1959).

    Article  CAS  Google Scholar 

  2. D. J. Chadi, Phys. Rev. Lett. 43, 43 (1979).

    Article  CAS  Google Scholar 

  3. R. J. Hamers, R. M. Tromp, and J. E. Demuth, Phys. Rev. B 34, 5343 (1986).

    Article  CAS  Google Scholar 

  4. R. A. Wolkow, Phys. Rev. Lett. 68, 2636 (1992).

    Article  CAS  Google Scholar 

  5. A. R. Smith, F. K. Men, K.-J. Chao, and C. K. Shih, J. Vac. Sci. Tech. B 14, 914 (1995).

    Google Scholar 

  6. T. Yokoyama and K. Takayanagi, Phys. Rev. B 56, 10483 (1997).

    Article  CAS  Google Scholar 

  7. T. Yokoyama and K. Takayanagi, Phys. Rev. B 57, R4226 (1998).

    Article  CAS  Google Scholar 

  8. Y. Kondo, T. Amakusa, M. Iwatsuki, and H. Tokumoto, Surf. Sci. 453, L318 (2000).

    Article  CAS  Google Scholar 

  9. T. Yokoyama and K. Takayanagi, Phys. Rev. B 61, 5078 (2000).

    Article  Google Scholar 

  10. K. Hata, S. Yoshida, H. Shigekawa, Phys. Rev. Lett. 89, 286104 (2002).

    Article  CAS  Google Scholar 

  11. K. Sagisaka, M. Kitahara, D. Fujita, Jpn. J. Appl. Phys. 242, 126 (2003).

    Google Scholar 

  12. Y. Yamashita, S. Machida, M. Nagao, S. Yamamoto, Y. Kakefuda, K. Mukai, and J. Yoshinobu, Jpn. J. Appl. Phys. 241, L272 (2002).

    Google Scholar 

  13. T. Uozumi, Y. Tomiyoshi, N. Suehira, Y. Sugawara, S. Morita, Appl. Surf. Sci. 188, 279 (2002).

    Article  CAS  Google Scholar 

  14. J. Dabrowski and M. Scheffler, Appl. Surf. Sci. 56, 15 (1992).

    Article  Google Scholar 

  15. R. Konečny and D. J. Doren, J. Chem. Phys. 106, 2426 (1997).

    Google Scholar 

  16. J. S. Hess and D. J. Doren, J. Chem. Phys 113, 9353 (2000).

    Article  CAS  Google Scholar 

  17. C. Yang and H. C. Kang, J. Chem. Phys. 110, 11029 (1999).

    CAS  Google Scholar 

  18. E. Penev, P. Kratzer, and M. Scheffler, J. Chem. Phys. 110, 3986 (1999).

    Article  CAS  Google Scholar 

  19. C. Yang, S. Y. Lee, and H. C. Kang, J. Chem. Phys. 107, 3295 (1997).

    CAS  Google Scholar 

  20. S. B. Healy, C. Filippi, P. Kratzer, E. Penev, M. Scheffler, Phys. Rev. Lett. 87, 16105 (2001).

    Article  CAS  Google Scholar 

  21. A. Redondo and W. A. Goddard, III, J. Vac. Sci. Tech. 21, 344 (1982).

    CAS  Google Scholar 

  22. B. Paulus, Surf. Sci. 48, 195 (1998).

    Google Scholar 

  23. J. R. Shoemaker, L. W. Burggraf, and M. S. Gordon, J. Chem. Phys. 112, 2994 (2000).

    Article  CAS  Google Scholar 

  24. M. S. Gordon, J. R. Shoemaker, and L. W. Burggraf, J. Chem. Phys. 113, 9355 (2000).

    CAS  Google Scholar 

  25. E. Buehler and J. J. Boland, Science 290, 506 (2000).

    Article  CAS  Google Scholar 

  26. Y. J. Chabal and K. Raghavachari, Phys. Rev. Lett. 53, 282 (1984).

    CAS  Google Scholar 

  27. P. Nachtigall, K. D. Jordan, K. C. Janda, J. Chem. Phys. 95, 8652 (1991).

    Article  CAS  Google Scholar 

  28. Z. Jing, G. Lucovsky, and J. L. Whitten, Surf. Sci. Lett. 296, L33 (1993).

    Article  CAS  Google Scholar 

  29. C. J. Wu, I. V. Ionova, and E. A. Carter, Surf. Sci. 295, 64 (1993).

    CAS  Google Scholar 

  30. P. Nachtigall, C. Sosa, and K. D. Jordan, J. Chem. Phys. 101, 8073 (1994).

    CAS  Google Scholar 

  31. X. Lu, Q. Zhang, and M. C. Lin, Phys. Chem. Chem. Phys. 3, 2156 (2001).

    CAS  Google Scholar 

  32. M. R. Radeke and E. A. Carter, Surf. Sci. 355, L289 (1996).

    Article  CAS  Google Scholar 

  33. J. A. Steckel, T. Phung, K. D. Jordan, and P. Nachtigall, J. Phys. Chem. B 105, 4031 (2001).

    Article  CAS  Google Scholar 

  34. J. Cizek, Adv. Chem. Phys. 14, 35 (1969).

    CAS  Google Scholar 

  35. G. D. Purvis and R. J. Bartlett, J. Chem. Phys. 76, 1910 (1982).

    Article  CAS  Google Scholar 

  36. G. E. Scuseria, C. L. Janssen, and H. F. Schaefer, III, J. Chem. Phys. 89, 7382 (1988).

    Article  CAS  Google Scholar 

  37. J. A. Pople, R. Krishnan, H. B. Schlegel, and J. S. Binkley, Int. J. Quant. Chem. XIV, 545 (1978).

    Google Scholar 

  38. J. R. Shoemaker, L. W. Burgraff, and M. S. Gordon, J. Phys. Chem. A 103, 3245 (1999).

    Article  CAS  Google Scholar 

  39. D. C. Sorescu and K. D. Jordan, J. Phys. Chem. B 104, 8259 (2000).

    CAS  Google Scholar 

  40. H. Over, J. Wasserfall, W. Ranke, C. Ambiatello, R. Sawitzki, D. Wolf, and W. Moritz, Phys. Rev. B 55, 4731 (1997).

    CAS  Google Scholar 

  41. R. Felici, I. K. Robinson, C. Ottaviani, P. Imperatori, P. Eng, and P. Perfetti, Surf. Sci. 375, 55 (1997).

    Article  CAS  Google Scholar 

  42. P. Kratzer, B. Hammer, and J. K. Nørskov, Chem. Phys. Lett. 229, 645 (1994).

    Article  CAS  Google Scholar 

  43. P. Kratzer, B. Hammer, and J. K. Nørskov, Phys. Rev. B 51, 13432 (1995).

    Article  CAS  Google Scholar 

  44. E. Pehlke and M. Scheffler, Phys. Rev. Lett. 74, 952 (1995).

    Article  CAS  Google Scholar 

  45. T.-C. Shen, J. A. Steckel, and K. D. Jordan, Surf. Sci. 446, 211 (2000).

    Article  CAS  Google Scholar 

  46. A. Vittadini and A. Selloni, Chem. Phys. Lett. 235, 334 (1995).

    Article  CAS  Google Scholar 

  47. G. Kresse, J. Hafner, Phys. Rev. B 48, 13115 (1993).

    Article  CAS  Google Scholar 

  48. G. Kresse, Furthmüller, J. Comput. Mater. Sci. 6, 15 (1996).

    Article  CAS  Google Scholar 

  49. G. Kresse, Furthmüller, J. Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  50. The program Dacapo is available at http://www.fysik.dtu.dk/CAMPOS.

  51. M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992).

    Article  CAS  Google Scholar 

  52. P. Y. Ayala, K. N. Kudin, and G. E. Scuseria, J. Chem. Phys. 115, 9698 (2001).

    Article  CAS  Google Scholar 

  53. W. M. C. Foulkes, L. Mitas, R. J. Needs, and G. Rajagopal, Rev. Mod. Phys. 73, 33 (2001).

    Article  CAS  Google Scholar 

  54. C. Filippi, S. B. Healy, P. Kratzer, E. Pehlke, M. Scheffler, Phys. Rev. Lett 89, 166102 (2002).

    Article  CAS  Google Scholar 

  55. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

    CAS  Google Scholar 

  56. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).

    CAS  Google Scholar 

  57. S. H. Vosko, L. Wilk, and M. Nusir, Can. J. Phys. 58, 1200 (1980).

    Article  CAS  Google Scholar 

  58. S. Chawla and G. A. Voth, J. Chem. Phys. 108, 4697 (1998).

    Article  CAS  Google Scholar 

  59. B. Delley, J. Chem. Phys. 113, 7756 (2000).

    Article  CAS  Google Scholar 

  60. G. te Velde and E. J. Baerends, . Comput. Phys. 99, 84 (1992).

    Google Scholar 

  61. High Performance Computational Chemistry Group, NWChem, A Computational Chemistry Package for Parallel Computers, Version 4.5, Pacific North-west National Laboratory, Richland, Washington, 99352, 2003.

    Google Scholar 

  62. D. Sánchez-Portal, P. Ordejó, E. Artacho, and J. M. Soler, Int. J. Quant. Chem. 65, 453 (1997).

    Google Scholar 

  63. E. Artacho, D. Sánchez-Portal, P. Ordejó, A. Garcia, and J. M. Soler, Phys. Stat. Sol. B 215, 809 (1999).

    Article  CAS  Google Scholar 

  64. D. R. Salahub, M. E. Castro, and E. I. Proynov in Relativistic and Electron Correlation Effects in Molecules and Solids, vol. 318 of NATO ASI Series B: Physics, G. L. Malli, ed., Plenum Press, 1994, p. 411.

    Google Scholar 

  65. D. R. Salahub, M. E. Castro, R. Fournier, P. Calaminici, N. Godbout, A. Goursot, C. Jamorski, H. Kobayashi, A. Martinez, I. Papai, E. Proynov, N. Russo, S. Sirois, J. Usio, and A. Vela in Theoretical and Compuational Approaches to Interface Phenomena, H. Sellers and J. T. Golab, eds., Plenum Press, 1995, p. 187.

    Google Scholar 

  66. R. Dovesi, V. R. Sanders, C. Roetti, M. Causà, N. M. Harrison, R. Orlando, and E. Aprà, CRYSTAL95 User Manual (Università di Torino, Torino, Italy, and CCLRC Daresbury Laboratory, Daresbury, UK) 1996.

    Google Scholar 

  67. M. Challacombe and E. Schwegler, MONDOSCF, a program suite for massively parallel, linear scaling SCF theory, http://www.t12.lanl.gov/home/mchalla.

  68. Gaussian 03, Revision A.1, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski. P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Pittsburgh, PA, 2003.

    Google Scholar 

  69. A. Abdurahman, M. Albrecht, A. Shukla, and M. Dolg, J. Chem. Phys. 110, 8819 (1999).

    Article  CAS  Google Scholar 

  70. R. N. Barnett and U. Landman, Phys. Rev. B 48, 2081 (1993).

    Article  CAS  Google Scholar 

  71. J. D. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992).

    CAS  Google Scholar 

  72. A. D. Becke, Phys. Rev. A 38, 3098 (1988).

    Article  CAS  Google Scholar 

  73. P. Nachtigall, K. D. Jordan, A. Smith, and H. Jónsson, J. Chem. Phys. 104, 148 (1996).

    Article  CAS  Google Scholar 

  74. J. P. Perdew, Phys. Rev. B 33, 8822 (1986).

    Google Scholar 

  75. J. A. Pople, M. Head-Gordon, and K. Raghavachari, J. Chem. Phys. 87, 5968 (1987).

    Article  CAS  Google Scholar 

  76. K. W. Kolasinski, W. Nessler, A. de Meijere, and E. Hasselbrink, Phys. Rev. Lett. 72, 1356 (1994).

    Article  CAS  Google Scholar 

  77. K. W. Kolasinski, W. Nessler, K.-H. Bornscheuer, and E. Hasselbrink, J. Chem. Phys. 101, 7082 (1994).

    Article  Google Scholar 

  78. K. Sinniah, M. G. Sherman, L. B. Lewis, W. H. Weinberg, J. T. Yates, Jr., and K. C. Janda, J. Chem. Phys. 92, 5700 (1990).

    Article  CAS  Google Scholar 

  79. K. Sinniah, M. G. Sherman, L. B. Lewis, W. H. Weinberg, J. T. Yates, Jr., and K. C. Janda, Phys. Rev. Lett. 62, 567 (1989).

    Article  CAS  Google Scholar 

  80. M. L. Wise, B. G. Koehler, P. Gupta, P. A. Coon, and S. M. George, Surf. Sci. 258, 166 (1991).

    Article  CAS  Google Scholar 

  81. M. Dürr, Z. Hu, A. Biederman, U. Höfer, and T. F. Heinz, Phys. Rev. Lett. 88, 046104 (2002).

    Google Scholar 

  82. M. Dürr, Z. Hu, M. B. Raschke, E. Pehlke, and U. Hüfer, Phys. Rev. Lett. 86, 123 (2001).

    Google Scholar 

  83. M. Dürr, Z. Hu, A. Biederman, U. Höfer, and T. F. Heinz, Science 296, 1838 (2002).

    Google Scholar 

  84. M. Dürr and U. Höfer, Phys. Rev. Lett 88, 076107 (2002).

    Google Scholar 

  85. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).

    Article  Google Scholar 

  86. J. A. Steckel and K. D. Jordon, unpublished results.

    Google Scholar 

  87. R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople, J. Chem. Phys. 72, 650 (1980).

    CAS  Google Scholar 

  88. A. D. McLean and G. S. Chandler, J. Chem. Phys. 72, 5639 (1980).

    Article  CAS  Google Scholar 

  89. M. S. Gordon, Chem. Phys. Lett. 76, 163 (1980).

    Article  CAS  Google Scholar 

  90. W. J. Hehre, R. Ditchfield, and J. A. Pople, J. Chem. Phys. 56, 2257 (1972).

    CAS  Google Scholar 

  91. P. J. Hay and W. R. Wadt, J. Chem. Phys. 82, 284 (1985).

    Google Scholar 

  92. G. Mills and H. Jónsson, Phys. Rev. Lett. 72, 1124 (1994).

    Article  CAS  Google Scholar 

  93. G. Mills, H. Jónsson, and G. K. Schenter, Surf. Sci. 324, 305 (1995).

    Article  CAS  Google Scholar 

  94. B. Uberuaga, M. Levskovar, A. P. Smith, H. Jónsson, and M. Olmstead, Phys. Rev. Lett. 84, 2441 (2000).

    Article  CAS  Google Scholar 

  95. D. Alfonso and K. D. Jordan, J. Comp. Chem. 24, 990 (2003).

    CAS  Google Scholar 

  96. G. Binnig and H. Rohrer, Surf. Sci. 126, 236 (1983).

    Article  CAS  Google Scholar 

  97. J. Tersoff and D. R. Hamann, Phys. Rev. B 31, 805 (1985).

    Article  CAS  Google Scholar 

  98. K. Stokbro, U. Quaade, and F. Grey, Appl. Phys. A 66, S907 (1998).

    Article  Google Scholar 

  99. W. A. Hofer and J. Redinger, Surf. Sci. 447, 51 (2000).

    Article  CAS  Google Scholar 

  100. The Transiesta code is described at www.transiesta.com. See also, M. Brandbyge, J.-L. Mozos, P. Ordejon, J. Taylor, and K. Stokbro, Phys. Rev. B. 65, 165401 (2002).

    Article  CAS  Google Scholar 

  101. F. Wang, D. C. Sorescu, and K. D. Jordan, J. Chem. Phys. B 106, 1316 (2002).

    CAS  Google Scholar 

  102. S. Mezhenny, I. Lyubinetsky, W. J. Choyke, R. A. Wolkow, J. T. Yates, Jr., Chem. Phys. Lett. 344, 7 (2001).

    Article  CAS  Google Scholar 

  103. Y. Morikawa, Phys. Rev. B 63, 33405 (2001).

    Article  CAS  Google Scholar 

  104. W. Kim, H. Kim, G. Lee, J. Chung, S. Y. You, Y. K. Hong, J. Y. Koo, Surf. Sci. 514, 376 (2002).

    Article  CAS  Google Scholar 

  105. W. Kim, H. Kim, G. Lee, Y. K. Hong, K. Lee, C. Hwang, D. H. Kim, J. Y. Koo, Phys. Rev. B 64, 193313 (2001).

    Google Scholar 

  106. R. Terborg, M. Polcik, J. T. Hoeft, M. Kittel, D. I. Sayago, R. L. Toomes, and D. P. Woodruff, Phys. Rev. B 66, 085333 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Steckel, J.A., Jordan, K.D. (2004). Theoretical Methods for Modeling Chemical Processes on Semiconductor Surfaces. In: Curtiss, L., Gordon, M. (eds) Computational Materials Chemistry. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2117-8_6

Download citation

Publish with us

Policies and ethics