Skip to main content

Density Results for Frames of Exponentials

  • Chapter
Book cover Harmonic Analysis and Applications

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

For a separated sequence Λ={λ k } k∈z of real numbers there is a close link between the lower and upper densities D (Λ), D +(Λ) and the frame properties of the exponentials \( \{ e^{i\lambda _k x} \} _{k \in \mathbb{Z}:} \) in fact, \( \{ e^{i\lambda _k x} \} _{k \in \mathbb{Z}} \) is a frame for its closed linear span in L 2(−ν, ν) for any ν ∈ (0, πD -(Λ)) ∪ (πD +(Λ),∞) . We consider a classical example presented already by Levinson [11] with D -(Λ) = D +(Λ) = 1; in this case, the frame property is guaranteed for all ν ∈ (0; ∞) ∖ {π}. We prove that the frame property actually breaks down for ν = π. Motivated by this example, it is natural to ask whether the frame property can break down on an interval if D (Λ) ≠ D +(Λ). The answer is yes: We present an example of a family Λ with D (Λ) ≠ D +(Λ) for which \( \{ e^{i\lambda _k x} \} _{k \in \mathbb{Z}} \) has no frame property in L 2(−ν, ν) for any ν ∈ (π D (Λ), π D +(Λ)).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Balan, Stability theorems for Fourier frames and wavelet Riesz bases, J. Fourier Anal. Appl., 3 (1997), pp. 499–504.

    Article  MATH  Google Scholar 

  2. R. Balan, P. G. Casazza, C. Heil, and Z. Landau, Deficits and excesses of frames, Adv. Comp. Math., 18 (2002), pp. 93–116.

    Article  Google Scholar 

  3. J. Benedetto, Irregular sampling and frames, in: Wavelets: A Tutorial in Theory and Applications, C. K. Chui, ed., Academic Press, Boston, pp. 445–507.

    Google Scholar 

  4. O. Christensen, An Introduction to Frames and Riesz Bases, Birkhäuser, Boston, 2003.

    MATH  Google Scholar 

  5. O. Christensen, Perturbations of frames and applications to Gabor frames, in: Gabor Analysis and Algorithms, Theory and Applications, H. G. Feichtinger and T. Strohmer, eds., Birkhäuser, Boston, 1997, pp. 193–209.

    Google Scholar 

  6. I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, 1992.

    MATH  Google Scholar 

  7. R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc., 72 (1952), pp. 341–366.

    Article  MATH  Google Scholar 

  8. C. Heil, Linear independence of finite Gabor systems, Chapter 9, this volume (2006).

    Google Scholar 

  9. S. Jaffard, A density criterion for frames of complex exponentials. Michigan Math. J., 38 (1991), pp. 339–348.

    Article  MATH  Google Scholar 

  10. H. J. Landau, Necessary density conditions for sampling and interpolation of certain entire functions, Acta Math., 117 (1967), pp. 37–52.

    Article  MATH  Google Scholar 

  11. N. Levinson, On non-harmonic Fourier series, Ann. of Math. (2), 37 (1936), pp. 919–936.

    Article  Google Scholar 

  12. J. Ortega-Cerda and K. Seip, Fourier frames, Ann. of Math. (2), 155 (2002), pp. 789–806.

    MATH  Google Scholar 

  13. K. Seip, On the connection between exponential bases and certain related sequences in L 2(−π, π), J. Funct. Anal., 130 (1995), pp. 131–160.

    Article  MATH  Google Scholar 

  14. R. M. Young, An Introduction to Nonharmonic Fourier Series, Revised First Edition, Academic Press, San Diego, 2001.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Professor John Benedetto.

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Boston

About this chapter

Cite this chapter

Casazza, P.G., Christensen, O., Li, S., Lindner, A. (2006). Density Results for Frames of Exponentials. In: Heil, C. (eds) Harmonic Analysis and Applications. Applied and Numerical Harmonic Analysis. Birkhäuser Boston. https://doi.org/10.1007/0-8176-4504-7_16

Download citation

Publish with us

Policies and ethics