Skip to main content

On Bayesian and Decision-Theoretic Approaches to Statistical Prediction

  • Chapter
  • 3038 Accesses

Part of the book series: Statistics for Industry and Technology ((SIT))

Abstract

Let Y and Z be two random vectors with joint density f(y, z|θ), where θ∈Θ is an unknown parameter vector, and consider predicting Z based on y, the observed value of Y. We investigate Bayesian and decision-theoretic approaches to this problem, taking into account the loss function and the prior distribution of θ. Exploring connections between statistical prediction and decision theory, we find that a prediction problem can be reduced to a standard decision theory problem if the induced loss function is allowed to depend on the observed data y in addition to the unknown parameter θ and the decision d. In general, the predictive posterior density f(z|y) may not contain all information necessary for obtaining optimum predictions, but the posterior density f(θ|y) is adequate for that purpose. Some admissibility results are also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aitchison, J., and Dunsmore, I. R. (1975). Statistical Prediction Analysis, Cambridge University Press, New York.

    MATH  Google Scholar 

  2. Bain, L. J., and Patel, J. K. (1993). Prediction intervals based on partial observations for some discrete distributions, IEEE Transactions on Reliability, 42, 459–463.

    Article  MATH  Google Scholar 

  3. Besag, J. (1989). A candidate’s formula: A curious result in Bayesian prediction, Biometrika, 76, 183–183.

    Article  MathSciNet  Google Scholar 

  4. Bjornstad, J. F. (1996). On the generalization of the likelihood function and the likelihood principle, Journal of the American Statistical Association, 91, 791–806.

    Article  MathSciNet  Google Scholar 

  5. Ebrahimi, N. (1992). Prediction intervals for future failures in the exponential distribution under Hybrid censoring, IEEE Transactions on Reliability, 41(1), 127–132.

    Article  MATH  Google Scholar 

  6. Escobar, L. A., and Meeker, W. Q. (1999). Statistical prediction based on censored life data, Technometrics, 41, 113–124.

    Article  MATH  MathSciNet  Google Scholar 

  7. Farrell, R. H. (1968). On a necessary and sufficient condition for admissibility of estimators when strictly convex loss is used, Annals of Statistics, 38, 23–28.

    MathSciNet  Google Scholar 

  8. Geisser, S. (1993). Predictive Inference: An Introduction, Chapman_& Hall, New York.

    MATH  Google Scholar 

  9. Hill, J. R. (1990). A general framework for model-based statistics, Biometrika, 77, 115–126.

    Article  MATH  MathSciNet  Google Scholar 

  10. Johnstone, I. M. (1988). On admissibility of unbiased estimates of loss, In Statistical Decision Theory and Related Topics IV (Eds., S. S. Gupta and J. O. Berger), pp. 361–379, Springer-Verlag, New York.

    Google Scholar 

  11. Karlin, S. (1957). Admissibility for estimation with quadratic loss, Annals of Mathematical Statistics, 29, 406–436.

    MathSciNet  Google Scholar 

  12. Lehmann, E. L. (1986). Testing Statistical Hypotheses, 2nd ed., John Wiley_& Sons, New York.

    MATH  Google Scholar 

  13. Lehmann, E. L., and Casella, G. (1998). Theory of Point Estimation, 2nd ed., Springer-Verlag, New York.

    MATH  Google Scholar 

  14. Lele, C. (1993). Admissibility results in loss estimation, Annals of Statistics, 21, 378–390.

    MATH  MathSciNet  Google Scholar 

  15. Nayak, T. K. (1996). On estimating the conditional probability of discovering a new species, Communications in Statistics—Theory and Methods, 25, 2039–2056.

    Article  MATH  MathSciNet  Google Scholar 

  16. Nayak, T. K. (2000). On best unbiased prediction and its relationships to unbiased estimation, Journal of Statisticae Planning and Inference, 84, 171–189.

    Article  MATH  MathSciNet  Google Scholar 

  17. Nelson, W. (2000). Weibull prediction of a future number of failures, Quality and Reliability Engineering International, 16, 23–26.

    Article  Google Scholar 

  18. Nordman, D., and Meeker, W. Q. (2002). Weibull prediction intervals for a future number of failures, Technometrics, 44(1), 15–23.

    Article  MathSciNet  Google Scholar 

  19. Robbins, H. (1968). Estimating the total probability of the unobserved outcomes of an experiment, Annals of Mathematical Statistics, 39, 256–257.

    MathSciNet  Google Scholar 

  20. Rukhin, A. L. (1988). Estimated loss and admissible loss estimators, In Statistical Decision Theory and Related Topics IV (Eds., S. S. Gupta and J. O. Berger), pp. 409–418, Springer-Verlag, New York.

    Google Scholar 

  21. Takada, Y. (1979). The shortest interval for the largest observation from the exponential distribution, Journal of the Japan Statistical Society, 9, 87–91.

    MathSciNet  Google Scholar 

  22. Takada, Y. (1981a). Invariant prediction rules and an adequate statistic, Annals of the Institute of Statistical Mathematics, 33, 91–100.

    Article  MATH  MathSciNet  Google Scholar 

  23. Takada, Y. (1981b). Relation of the best invariant predictor and the best unbiased predictor in location and scale families, Annals of Statistics, 9, 917–921.

    MATH  MathSciNet  Google Scholar 

  24. Takada, Y. (1991). Median unbiasedness in an invariant prediction problem, Statistics_& Probability Letters, 12, 281–283.

    Article  MATH  MathSciNet  Google Scholar 

  25. Varian, H. R. (1975). A Bayesian approach to real estate assessment, In Studies in Bayesian Econometrics and Statistics in Honor of Leonard J. Savage (Eds., S. E. Fienberg and A. Zellner), pp. 195–208, North-Holland, Amsterdam.

    Google Scholar 

  26. Yatracos, Y. J. (1992). On prediction and mean squared error, Canadian Journal of Statistics, 20, 187–200.

    Article  MATH  MathSciNet  Google Scholar 

  27. Zellner A. (1986). Bayesian estimation and prediction using asymmetric loss functions, Journal of the American Statistical Association, 81, 446–451.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Boston

About this chapter

Cite this chapter

Nayak, T.K., El-Baz, A. (2006). On Bayesian and Decision-Theoretic Approaches to Statistical Prediction. In: Balakrishnan, N., Sarabia, J.M., Castillo, E. (eds) Advances in Distribution Theory, Order Statistics, and Inference. Statistics for Industry and Technology. Birkhäuser Boston. https://doi.org/10.1007/0-8176-4487-3_26

Download citation

Publish with us

Policies and ethics