Skip to main content

Object-Image Metrics for Generalized Weak Perspective Projection

  • Chapter
Book cover Statistics and Analysis of Shapes

Abstract

Generalized weak perspective is a common camera model describing the geometric projection for many common scenarios (e.g., 3D to 2D). This chapter describes a metric constructed for comparing (matching) configurations of object features to configurations of image features that is invariant to any affine transformation of the object or image. The natural descriptors are the Plücker coordinates because the Grassmann manifold is the natural shape space for invariance of point features under affine transformations in either the object or image. The objectimage equations detail the relation between the object descriptors and the image descriptors, and an algorithm is provided to compute the distances for all cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Arias, A. Edelman, and S. Smith. The geometry of algorithms and orthog-onality constraints. SIAM Journal of Matrix Analysis and Applications, 20: 303–353, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  2. G. Arnold, P. Stiller, and K. Sturtz. Object-image metrics for generalized weak perspective projection. Technical report, Air Force Research Laboratory, 2005.

    Google Scholar 

  3. G. Arnold and K. Sturtz. Object-image metrics and metric duality. Technical report, Air Force Research Laboratory, 2005.

    Google Scholar 

  4. G. Arnold, K. Sturtz, and V. Velten. Similarity metrics for ATR. In Proc. of Defense Applications of Signal Processing (DASP-01), Adelaide, AU, June 2001. AFOSR.

    Google Scholar 

  5. R. Basri and D. Weinshall. Distance metric between 3D models and 2D images for recognition and classification. A.I. Memo 1373, MIT, July 1992.

    Google Scholar 

  6. I. Csiszár. Why least squares and maximum entropy? an axiomatic approach to inference for linear inverse problems. The Annals of Statistics, 19(4):2032–2066, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  7. I.L. Dryden and K.V. Mardia. Statistical Shape Analysis. John Wiley & Sons, 1998.

    Google Scholar 

  8. P. Griffiths and J. Harris. Principles of Algebraic Geometry. Wiley and Sons, 1978.

    Google Scholar 

  9. W.E. L. Grimson, D.P. Huttenlocher, and T. Alter. Recognizing 3D objects from 2D images: An error analysis. A.I. Memo 1362, MIT, July 1992.

    Google Scholar 

  10. W.V.D. Hodge and D. Pedoe. Methods of Algebraic Geometry. Number 1,2, and 3 in Mathematical Library Series. Cambridge University Press, Cambridge, 1994.

    Google Scholar 

  11. D.W. Jacobs. Matching 3-D models to 2-D images. AI Lab Technical Report 1416, MIT, Sept. 1992.

    Google Scholar 

  12. A. Johnson. Spin-Images: A Representation for 3-D Surface Matching. Ph.D. thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PAAugust 1997.

    Google Scholar 

  13. I. Kemelmacher and R. Basri. Indexing with unknown illumination and pose. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), volume 1, pages 909–916, San Diego, CA, June 2005. IEEE, Computer Society.

    Google Scholar 

  14. S.R. Lele and J.T. Richtsmeier. An Invariant Approach to Statistical Analysis of Shape. Chapman & Hall/CRC, 2001.

    Google Scholar 

  15. D. Mumford. Mathematical theories of shape: Do they model perception? In B. C. Vemuri, editor, Proceedings SPIE, Geometric Methods in Computer Vi-sion, volume 1570, pages 2–10, Bellingham, WA, July 1991. SPIE-The Int’l Society for Optical Engineering.

    Google Scholar 

  16. M. Ray. Model-based 3D Object Recognition Using Invariants. Ph.D. thesis, University of Maryland, College Park, 2000.

    Google Scholar 

  17. S. Santini and R. Jain. Similarity measures. IEEE Trans. on Pattern Analysis and Machine Intelligence, 21(9):871–883, Sept. 1999.

    Google Scholar 

  18. A. Shashua. Algebraic functions for recognition. IEEE Trans. on Pattern Analysis and Machine Intelligence, 17(8):779–789, Aug. 1995.

    Google Scholar 

  19. C.G. Small. The Statistical Theory of Shape. Springer-Verlag New York, Incorporated, 1996.

    MATH  Google Scholar 

  20. P.F. Stiller. General approaches to recognizing geometric configurations from a single view. In Proceedings SPIE Int’l Conf., Vision Geometry VI, volume 3168, pages 262–273, Bellingham, WA, July 1997. SPIE-The Int’l Society for Optical Engineering.

    Google Scholar 

  21. P.F. Stiller. Object recognition from a global geometric perspective: invariants and metrics. In Proceedings SPIE Int’l Conf., Vision Geometry XI, volume 4794, pages 71–80, Seattle, WA, July 2002. SPIE-The Int’l Society for Optical Engineering.

    Google Scholar 

  22. P.F. Stiller. Object/image relations and vision metrics I. In M. Schmalz, editor, Symposium on Optical Science and Technology, Mathematics of Data/Image Coding, Compression, and Encryption VI, with Applications, volume 5208, pages 165–178, San Diego, CA, Aug. 2003. SPIE-The Int’l Society for Optical Engineering.

    Google Scholar 

  23. P.F. Stiller. Vision metrics and object/image relations II: Discrimination met-rics and object/image duality. In Proceedings SPIE Int’l Conf., Electronic Imag-ing, Vision Geometry XII, volume 5300, pages 74–85, San Jose, CA, Jan. 2004. SPIE-The Int’l Society for Optical Engineering.

    Google Scholar 

  24. P.F. Stiller, C.A. Asmuth, and C.S. Wan. Invariants, indexing, and single view recognition. In Proc. ARPA Image Understanding Workshop, pages 1432–1428, Monterrey, CA, November 1994.

    Google Scholar 

  25. P.F. Stiller, C.A. Asmuth, and C.S. Wan. Single view recognition —the perspective case. In Proceedings SPIE Int’l Conf., Vision Geometry V, volume 2826, pages 226–235, Bellingham, WA, Aug. 1996. SPIE-The Int’l Society for Optical Engineering.

    Google Scholar 

  26. M.A. Stuff. Three-dimensional analysis of moving target radar signals: Meth-ods and implications for ATR and feature aided tracking. In E. Zelnio, editor, Proceedings SPIE Int’l Conf., Algorithms for Synthetic Aperture Radar Im-agery VI, Bellingham, WA, April 1999. SPIE-The Int’l Society for Optical Engineering.

    Google Scholar 

  27. M.A. Stuff. Three dimensional invariants of moving targets. In E. Zelnio, editor, Proceedings SPIE Int’l Conf., Algorithms for Synthetic Aperture Radar Imagery VII, Bellingham, WA, April 2000. SPIE-The Int’l Society for Optical Engineering.

    Google Scholar 

  28. G. Wallis and E.T. Rolls. Invariant face and object recognition in the visual system. Progress in Neurobiology, 51:167–194, 1997.

    Article  Google Scholar 

  29. I. Weiss. Model-based recognition of 3D objects from one view. In Proc. DARPA Image Understanding Workshop, pages 641–652, Monterey, CA, No-vember 1998. Morgan Kauffman.

    Google Scholar 

  30. E.W. Weisstein. The CRC Concise Encyclopedia of Mathematics.CRC Press, 2nd edition, 2002. see http://www.mathworld.com.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Boston

About this chapter

Cite this chapter

Arnold, G., Stiller, P.F., Sturtz, K. (2006). Object-Image Metrics for Generalized Weak Perspective Projection. In: Krim, H., Yezzi, A. (eds) Statistics and Analysis of Shapes. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser Boston. https://doi.org/10.1007/0-8176-4481-4_10

Download citation

Publish with us

Policies and ethics