Skip to main content

Dual Matrix Inequalities in Stability and Performance Analysis of Linear Differential/Difference Inclusions

  • Chapter
Current Trends in Nonlinear Systems and Control

Summary

This chapter provides numerical examples to illustrate the recent results by the authors relating asymptotic stability and dissipativity of a linear differential or difference inclusion to these properties for the corresponding dual linear differential or difference inclusion. It is shown how this duality theory broadens the applicability of numerical algorithms for stability and performance analysis that have appeared previously in the literature.

Research by T. Hu and A.R. Teel was supported in part by the ARO under Grant no. DAAD19-03-1-0144, the NSF under Grant no. ECS-0324679, and by the AFOSR under Grant no. F49620-03-1-0203.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beran E, Vandenberghe L, Boyd S (1997) A global BMI algorithm based on the generalized Benders decomposition. In: Proc. of the European Control Conference, Brussels, Belgium, paper no. 934

    Google Scholar 

  2. Blanchini F (1995) Nonquadratic Lyapunov functions for robust control. Automatica 31:451–461

    Article  MATH  MathSciNet  Google Scholar 

  3. Boyd S, El Ghaoui L, Feron E, Balakrishnan V (1994) Linear matrix inequalities in system and control theory. SIAM, Philadelphia, PA

    MATH  Google Scholar 

  4. Brayton R, Tong C (1979) Stability of dynamical systems: a constructive approach. IEEE Trans. on Circuits and Systems 26:224–234

    Article  MATH  MathSciNet  Google Scholar 

  5. Chesi G, Garulli A, Tesi A, Vicino A (2003) Homogeneous Lyapunov functions for systems with structured uncertainties. Automatica 39:1027–1035

    Article  MATH  MathSciNet  Google Scholar 

  6. Dayawansa W, Martin C (1999) A converse Lyapunov theorem for a class of dynamical systems which undergo switching. IEEE Trans. Automat. Control 44(4):751–760

    Article  MATH  MathSciNet  Google Scholar 

  7. Goebel R, Teel A, Hu T, Lin Z (2004) Dissipativity for dual linear differential inclusions through conjugate storage functions. In: Proc. of the 43rd IEEE Conference on Decision and Control, Bahamas

    Google Scholar 

  8. Goh K, Safonov M, Papavassilopoulos GP (1994) A global optimization approach for the BMI problem. 2009–2014. In: Proc. of the 33rd IEEE Conference on Decision and Control, Lake Buena Vista, FL

    Google Scholar 

  9. Hassibi A, How J, Boyd S (1999) A path-following method for solving BMI problems in control. 1385–1389. In: Proc. of American Control Conference, San Diego, CA

    Google Scholar 

  10. Hu T, Huang B, Lin Z (2004) Absolute stability with a generalized sector condition. IEEE Trans. Automatic Control 49(4):535–548

    Article  MathSciNet  Google Scholar 

  11. Hu T, Lin Z (2003) Composite quadratic Lyapunov functions for constrained control systems. IEEE Trans. Automatic Control 48(3):440–450

    Article  MathSciNet  Google Scholar 

  12. Hu T, Lin Z, Chen B (2002) Analysis and design for linear discrete-time systems subject to actuator saturation. Systems & Control Lett. 45(2):97–112

    Article  MATH  MathSciNet  Google Scholar 

  13. Hu T, Lin Z, Goebel R, Teel A (2004) Stability regions for saturated linear systems via conjugate Lyapunov functions. In: Proceedings of the 43rd IEEE Conference on Decision and Control, Bahamas

    Google Scholar 

  14. Jarvis-Wloszek Z, Packard A (2002) An LMI method to demonstrate simultaneous stability using nonquadratic polynomial Lyapunov functions. 287–292. In: Proc. of the 41st IEEE Conference on Decision and Control, Las Vegas, NV

    Google Scholar 

  15. Molchanov A, Pyatnitskiy Y (1989) Criteria of asymptotic stability of differential and difference inclusions endountered in control theory. Systems & Control Lett. 13:59–64

    Article  MATH  MathSciNet  Google Scholar 

  16. Power H, Tsoi A (1973) Improving the predictions of the circle criterion by combining quadratic forms. IEEE Trans. Automat. Control 18(1):65–67

    Article  MATH  Google Scholar 

  17. Rockafellar R (1970) Convex analysis. Princeton University Press

    Google Scholar 

  18. Rockafellar R, Wets RJB (1998) Variational analysis. Springer, New York

    MATH  Google Scholar 

  19. Shorten RN, Narendra KS (2003) On common quadratic Lyapunov functions for pairs of stable LTI systems whose system matrices are in companion form. IEEE Trans. Automat. Control 48(4):618–621

    Article  MathSciNet  Google Scholar 

  20. Willems J (1972a) Dissipative dynamical systems, part I: General theory. Arch. Rational Mech. Anal. 45:321–351

    Article  MATH  MathSciNet  Google Scholar 

  21. Willems J (1972b) Dissipative dynamical systems, part II: Linear systems with quadratic supply rates. Arch. Rational Mech. Anal. 45:352–393

    Article  MATH  MathSciNet  Google Scholar 

  22. Xie L, Shishkin S, Fu M (1997) Piecewise Lyapunov functions for robust stability of linear time-varying systems. Systems & Control Lett. 31:165–171

    Article  MATH  MathSciNet  Google Scholar 

  23. Zelentsovsky A (1994) Nonquadratic Lyapunov functions for robust stability analysis of linear uncertain systems. IEEE Trans. Automat. Control 39(1):135–138

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Boston

About this chapter

Cite this chapter

Goebel, R., Hu, T., Teel, A.R. (2006). Dual Matrix Inequalities in Stability and Performance Analysis of Linear Differential/Difference Inclusions. In: Menini, L., Zaccarian, L., Abdallah, C.T. (eds) Current Trends in Nonlinear Systems and Control. Systems and Control: Foundations & Applications. Birkhäuser Boston. https://doi.org/10.1007/0-8176-4470-9_6

Download citation

Publish with us

Policies and ethics