Coordination of Robot Teams: A Decentralized Approach

  • Rafael Fierro
  • Peng Song
Part of the Systems and Control: Foundations & Applications book series (SCFA)

Summary

In this chapter, we present two main contributions: (1) a leader-follower formation controller based on dynamic feedback linearization, and (2) a framework for coordinating teams of mobile robots (i.e., swarms). We derive coordination algorithms that allow robot swarms having independent goals but sharing a common environment to reach their target destinations. Derived from simple potential fields and the hierarchical composition of potential fields, our framework leads to a decentralized approach to coordinate complex group interactions. Because the framework is decentralized, it can potentially scale to teams of tens and hundreds of robots. Simulation results verify the scalability and feasibility of the proposed coordination scheme.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baras JS, Tan X, Hovareshti P (2003) Decentralized control of autonomous vehicles 1532–1537. In: Proc. IEEE Conf. on Decision and Control, Maui, HIGoogle Scholar
  2. 2.
    Barraquand J, Latombe J (1993) Non-holonomic multibody mobile robots: controllability and motion planning in the presence of obstacles. Algorithmica 10:121–155MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Belta C, Kumar V (2004) Abstraction and control for groups of robots. IEEE Trans. on Robotics and Automation 20(5):865–875Google Scholar
  4. 4.
    Bemporad A, De Luca A, Oriolo G (1996) Local incremental planning for a car-like robot navigating among obstacles 1205–1211, In: Proc. IEEE Int. Conf. on Robotics and Automation, Minneapolis, MNGoogle Scholar
  5. 5.
    Butenko S, Murphey R, Pardalos P (eds) (2003) Cooperative control: models, applications and algorithms, vol. 1 of Applied optimization. Kluwer Academic Publishers, DordrechtGoogle Scholar
  6. 6.
    Chaimowicz L, Kumar V, Campos M (2004) A paradigm for dynamic coordination of multiple robots. Autonomous Robots 17(1):7–21CrossRefGoogle Scholar
  7. 7.
    Das AK, Fierro R, Kumar V, Ostrowski JP, Spletzer J, Taylor CJ (2002) A vision-based formation control framework. IEEE Trans. on Robotics and Automation 18(5):813–825CrossRefGoogle Scholar
  8. 8.
    De Luca A, Oriolo G, Samson C (1998) Feedback control of a nonholonomic car-like robot In: Laumond J.-P (ed), Robot motion planning and control, 171–253. Springer-Verlag, LondonCrossRefGoogle Scholar
  9. 9.
    Fierro R, Clark J, Hougen D, Commuri S (2005) A multi-robot testbed for bilogically inspired cooperative control In: Schultz A, Parker L, Schneider F (eds), Multi-robot systems: from swarms to intelligent automata, Naval Research Laboratory, Washington, DCGoogle Scholar
  10. 10.
    Fierro R, Lewis FL (1997) Control of a nonholonomic mobile robot: backstepping kinematics into dynamics. J. Robotic Systems 14(3):149–163MATHCrossRefGoogle Scholar
  11. 11.
    Fierro R, Song P, Das AK, Kumar V (2002) Cooperative control of robot formations In: Murphey R, Pardalos P (eds), Cooperative control and optimization, vol. 66 of Applied optimization, chapter 5, 73–93. Kluwer Academic Publishers, DordrechtCrossRefGoogle Scholar
  12. 12.
    Gerkey BP, Matarić MJ (2004) A formal analysis and taxonomy of task allocation in multi-robot systems. Int. J. Robot. Research 23(9):939–954CrossRefGoogle Scholar
  13. 13.
    Ghosh R, Tomlin C (2000) Maneuver design for multiple aircraft conflict resolution 672–676. In: Proc. American Control Conference, Chicago, ILGoogle Scholar
  14. 14.
    Isidori A (1995) Nonlinear control systems, Springer-Verlag, LondonMATHGoogle Scholar
  15. 15.
    Khatib O (1986) Real-time obstacle avoidance for manipulators and mobile robots. International Journal of Robotics Research 5:90–98Google Scholar
  16. 16.
    Koditschek D (1987) Exact robot navigation by means of potential functions: some topological considerations 1–6. In: Proc. IEEE Int. Conf. Robot. Automat.Google Scholar
  17. 17.
    Kumar V, Leonard N, Morse A (eds) (2004) A post-workshop volume, 2003 Block Island Workshop on Cooperative Control Series, vol. 309 of LNCIS. Springer-Verlag, LondonGoogle Scholar
  18. 18.
    LaValle S, Hutchinson S (1998) Optimal motion planning for multiple robots having independent goals. IEEE Trans. on Robotics and Automation 14(6):912–925CrossRefGoogle Scholar
  19. 19.
    Leonard NE, Fiorelli E (2001) Virtual leaders, artificial potentials and coordinated control of groups 2968–2973. In: Proc. IEEE Conf. on Decision and Control, Orlando, FLGoogle Scholar
  20. 20.
    Ögren P, Fiorelli E, Leonard N (2004) Cooperative control of mobile sensor networks: adaptive gradient climbing in a distributed environment. IEEE Trans. on Automatic Control 49(8):1292–1302CrossRefGoogle Scholar
  21. 21.
    Okubo A (1985) Dynamical aspects of animal grouping: swarms, schools, flocks and herds. Advances in Biophysics 22:1–94MathSciNetCrossRefGoogle Scholar
  22. 22.
    Oriolo G, De Luca A, Vendittelli M (2002) WMR control via dynamic feedback linearization. IEEE Trans. on Robotics and Automation 10(6):835–852Google Scholar
  23. 23.
    Song P, Kraus P, Kumar V, Dupont P (2001) Analysis of rigid-body dynamic models for simulation of systems with frictional contacts. ASME Journal of Applied Mechanics 68:118–128CrossRefMATHGoogle Scholar
  24. 24.
    Song P, Kumar V (2002) A potential field based approach to multi-robot manipulation 1217–1222. In: Proc. IEEE Int. Conf. Robot. Automat., Washington, DCGoogle Scholar
  25. 25.
    Spletzer J, Das A, Fierro R, Taylor CJ, Kumar V, Ostrowski JP (2001) Cooperative localization and control for multi-robot manipulation 631–636. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Maui, HIGoogle Scholar

Copyright information

© Birkhäuser Boston 2006

Authors and Affiliations

  • Rafael Fierro
    • 1
  • Peng Song
    • 2
  1. 1.School of Electrical and Computer EngineeringOklahoma State UniversityStillwaterUSA
  2. 2.Department of Mechanical and Aerospace EngineeringRutgers, The State University of New JerseyPiscatawayUSA

Personalised recommendations