Skip to main content

Visual Servoing with Central Catadioptric Camera

  • Chapter
Current Trends in Nonlinear Systems and Control

Summary

In this chapter we present an epipolar-based visual servoing for holonomic mobile robots equipped with panoramic camera. The proposed visual servoing is based on epipolar geometry and exploits the auto-epipolar property, a special configuration for the epipoles that occurs when the desired and the current panoramic views undergo a pure translation. This occurrence is detectable directly in the image plane simply controlling when the so-called biosculating conics all co-intersect at only two points. Our visual servoing control law exploits the auto-epipolar property in order to retrieve the equal orientation between target and current camera. Translation is performed by exploiting the epipoles. Simulation results and Lyapunov-based stability analysis demonstrate the parametric robustness of the proposed method. We also provide a short introduction to the Epipolar Geometry Toolbox (EGT), a free MATLAB software package developed at the University of Siena, with which all simulation results have been obtained. EGT can be downloaded from the EGT web site together with a detailed manual and code examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker S, Nayar S (1999) A theory of single-viewpoint catadioptric image formation. International Journal of Computer Vision 35(2):175–196

    Article  Google Scholar 

  2. Benosman R, Kang S (2001) Panoramic vision: sensors, theory and applications. Springer-Verlag, New York

    MATH  Google Scholar 

  3. Chesi G, Hashimoto K, Prattichizzo D, Vicino A (2004) Keeping features in the field of view in eye-in-hand visual servoing: a switching approach. IEEE Trans. on Robotics 20(5):908–914

    Article  Google Scholar 

  4. Chesi G, Piazzi J, Prattichizzo D, Vicino A (2002) Epipole-based visual servoing using profiles. In: IFAC World Congress, Barcelona, Spain

    Google Scholar 

  5. Conticelli F, Prattichizzo D, Bicchi A, Guidi F (2000) Vision-based dynamic estimation and set-point stabilization of nonholonomic vehicles. 2771–2776. In: Proc. IEEE Int. Conf. on Robotics and Automation, San Francisco, CA

    Google Scholar 

  6. Cowan N, Shakernia O, Vidal R, Sastry S (2003) Vision-based follow the leader. 1798–1801. In: Proc. International Conference on Intelligent Robots and Systems, Las Vegas, NV

    Google Scholar 

  7. Cowan N, Weingarten J, Koditshek D (2002) Visual servoing via navigation functions. IEEE Trans. on Robotics and Automation 18:521–533

    Article  Google Scholar 

  8. Faugeras O (1993) 3-D computer vision, a geometric viewpoint. MIT Press, Cambridge, MA

    Google Scholar 

  9. Gaspar J, Winters N, Santos-Victor J (2000) Vision-based navigation and environmental representations with an omnidirectional camera. In: IEEE Trans. on Robotics and Automation 16(6):890–898

    Article  Google Scholar 

  10. Geyer C, Daniilidis K (2001) Catadioptric projective geometry. International Journal of Computer Vision 45(3):223–243

    Article  MATH  Google Scholar 

  11. Mariottini GL, Alunno E, Prattichizzo D (2004) The epipolar geometry toolbox (EGT) for Matlab, Technical Report 07-21-3-DII, University of Siena, Siena, Italy

    Google Scholar 

  12. Hartley R (1995) In defence of the 8-point algorithm. 1064–1070. In: Proc. of IEEE Int. Conference on Computer Vision, Cambridge, MA

    Google Scholar 

  13. Hartley R, Zisserman A (2000) Multiple view geometry in computer vision. Cambridge University Press, Cambridge, UK

    MATH  Google Scholar 

  14. Hutchinson SA, Hager GD, Corke PI (1996) A tutorial on visual servo control. IEEE Trans. on Robotics and Automation 12(5):651–670

    Article  Google Scholar 

  15. Piazzi J, Prattichizzo D (2003) An auto-epipolar strategy for mobile robot visual servoing. In: IEEE IROS03 Conference on Intelligent Robots and Systems, Las Vegas, NV

    Google Scholar 

  16. Hashimoto K, Noritsugu T (1997) Visual servoing of nonholonomic cart. 1719–1724. In: IEEE Int. Conf. Robotics and Automation, Albuquerque, NM

    Google Scholar 

  17. Ma Y, Soatto S, Košecká J, Sastry SS (2003) An invitation to 3-D vision, from images to geometric models. Springer-Verlag, New York

    Google Scholar 

  18. Malis E, Chaumette F, Boudet S (1998) 2D 1/2 visual servoing stability analysis with respect to camera calibration errors. 691. In: Proceedings of the 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vancouver, BC

    Google Scholar 

  19. Mariottini G, Prattichizzo D (2004) Epipolar Geometry Toolbox for Matlab, University of Siena, http://egt.dii.unisi.it

    Google Scholar 

  20. Nayar S (1997) Catadioptric omnidirectional camera. 482–488. In: Proc. of International Conference on Computer Vision and Pattern Recognition, Puerto Rico

    Google Scholar 

  21. Piazzi J, Cowan N, Prattichizzo D (2004) Auto-epipolar visual servoing. In: IEEE Conf. on Intelligent Robots and Systems (IROS), Sendai, Japan

    Google Scholar 

  22. Svoboda T (1999) Central panoramic cameras design, geometry, egomotion, PhD thesis, Center for Machine Perception, Czech Technical University, Prague, Czech Republic

    Google Scholar 

  23. Svoboda T, Pajdla T, Hlaváč V (1998) Epipolar geometry for panoramic cameras. 218–232. In: Fifth European Conference on Computer Vision LNCS 1406, Freiburg, Germany

    Google Scholar 

  24. Svoboda T, Pajdla T, Hlaváč V (2001) Epipolar geometry for central panoramic catadioptric cameras In: Panoramic vision: sensors, theory and applications. Springer-Verlag, New York

    Google Scholar 

  25. Usher K, Ridley P, Corke P (2003) Visual servoing for a car-like vehicle-An application of omnidirectional vision. 4288–4293. In: IEEE International Conference on Robotics and Automation, Taiwan

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Boston

About this chapter

Cite this chapter

Mariottini, G.L., Alunno, E., Piazzi, J., Prattichizzo, D. (2006). Visual Servoing with Central Catadioptric Camera. In: Menini, L., Zaccarian, L., Abdallah, C.T. (eds) Current Trends in Nonlinear Systems and Control. Systems and Control: Foundations & Applications. Birkhäuser Boston. https://doi.org/10.1007/0-8176-4470-9_17

Download citation

Publish with us

Policies and ethics