Momentum maps and measure-valued solutions (peakons, filaments, and sheets) for the EPDiff equation

  • Darryl D. Holm
  • Jerrold E. Marsden
Part of the Progress in Mathematics book series (PM, volume 232)


This paper is concerned with the dynamics of measure-valued solutions of the EPDiff equations, standing for the Euler-Poincaré equations associated with the diffeomorphism group (ofnor of an n-dimensional manifold M). It focuses on Lagrangians that are quadratic in the velocity fields and their first derivatives, that is, on geodesic motion on the diffeomorphism group with respect to a right invariant Sobolev H1 metric. The corresponding Euler-Poincaré (EP) equations are the EPDiff equations, which coincide with the averaged template matching equations (ATME) from computer vision and agree with the Camassa-Holm (CH) equations for shallow water waves in one dimension. The corresponding equations for the volume-preserving diffeomorphism group are the LAE (Lagrangian averaged Euler) equations for incompressible fluids.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. M. Alber, R. Camassa, Y. Fedorov, D. Holm, and J. E. Marsden [2001], The complex geometry of weak piecewise smooth solutions of integrable nonlinear PDE’s of shallow water and Dym type, Comm. Math. Phys., 221, 197–227.MATHCrossRefMathSciNetGoogle Scholar
  2. M. S. Alber and J. E. Marsden [1992], On geometric phases for soliton equations, Comm. Math. Phys., 149, 217–240.MATHCrossRefMathSciNetGoogle Scholar
  3. V. I. Arnold [1966], Sur la géométrie différentielle des groupes de Lie de dimenson infinie et ses applications à l’hydrodynamique des fluids parfaits, Ann. Inst. Fourier Grenoble, 16, 319–361.Google Scholar
  4. A. D. Blaom [2001], A Geometric Setting for Hamiltonian Perturbation Theory, Memoirs of the American Mathematical Society, Vol. 727, Americal Mathematical Society, Providence, RI.Google Scholar
  5. R. Camassa and D. D. Holm [1993], An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71, 1661–1664.MATHCrossRefMathSciNetGoogle Scholar
  6. R. Camassa, D. D. Holm and J. M. Hyman [1994], A new integrable shallow water equation, Adv. Appl. Mech., 31, 1–33.CrossRefGoogle Scholar
  7. R. Camassa, D. D. Holm, and C. D. Levermore [1996], Long-time effects of bottom topography in shallow water, Phys. D, 98, 258–286.MATHCrossRefMathSciNetGoogle Scholar
  8. R. Camassa, D. D. Holm, and C. D. Levermore [1997], Long-time shallow-water equations with a varying bottom, J. Fluid Mech., 349, 173–189.MATHCrossRefMathSciNetGoogle Scholar
  9. M. Cantor [1975], Perfect fluid flows over R n with asymptotic conditions, J. Functional Anal., 18, 73–84.MATHCrossRefMathSciNetGoogle Scholar
  10. T. Courant and A. Weinstein [1988], Beyond Poisson structures, in Action hamiltoniennes de groupes: Troisième théorème de Lie (Lyon, 1986), Travaux en Cours, Vol. 27, Hermann, Paris, 39–49.Google Scholar
  11. M. Desbrun, A. N. Hirani, M. Leok, and J. E. Marsden [2003], Discrete Exterior Calculus, preprint.Google Scholar
  12. S. K. Donaldson [1999], Moment maps and diffeomorphisms, Asian J. Math., 3, 1–15.MATHMathSciNetGoogle Scholar
  13. H. R. Dullin, G. A. Gottwald, and D. D. Holm [2001], An integrable shallow water equation with linear and nonlinear dispersion, Phys. Rev. Lett., 87, 194501–194504.CrossRefGoogle Scholar
  14. H. R. Dullin, G. A. Gottwald, and D. D. Holm [2003], Camassa-Holm, Korteweg-de Vries-5 and other asymptotically equivalent equations for shallow water waves, Fluid Dynam. Res., 33, 73–95.MATHCrossRefMathSciNetGoogle Scholar
  15. H. R. Dullin, G. A. Gottwald, and D. D. Holm [2004], On asymptotically equivalent shallow water wave equations, Phys. D, 190, 1–14.MATHCrossRefMathSciNetGoogle Scholar
  16. D. G. Ebin and J. E. Marsden [1970], Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. Math., 92, 102–163.CrossRefMathSciNetGoogle Scholar
  17. O. Fringer and D. D. Holm [2001], Integrable vs. nonintegrable geodesic soliton behavior, Phys. D, 150, 237–263.MATHCrossRefMathSciNetGoogle Scholar
  18. A. Hirani, J. E. Marsden, and J. Arvo [2001], Averaged Template Matching Equations, Lecture Notes in Computer Science, Vol. 2134, Springer-Verlag, New York, 528–543.Google Scholar
  19. D. D. Holm and B. A. Kupershmidt [1983], Poisson brackets and Clebsch representations for magnetohydrodynamics, multifluid plasmas, and elasticity, Phys. D, 6, 347–363.CrossRefMathSciNetGoogle Scholar
  20. D. D. Holm, J. E. Marsden, and T. S. Ratiu [1998a], The Euler-Poincaré equations and semidirect products with applications to continuum theories, Adv. Math., 137, 1–81.MATHCrossRefMathSciNetGoogle Scholar
  21. D. D. Holm, J. E. Marsden and T. S. Ratiu [1998b], Euler-Poincaré models of ideal fluids with nonlinear dispersion, Phys. Rev. Lett., 349, 4173–4177.CrossRefGoogle Scholar
  22. D. D. Holm, J. E. Marsden, and T. S. Ratiu [2002], The Euler-Poincaré equations in geophysical fluid dynamics, in J. Norbury and I. Roulstone, eds., Large-Scale Atmosphere-Ocean Dynamics II: Geometric Methods and Models, Cambridge University Press, Cambridge, UK, 251–300.Google Scholar
  23. D. D. Holm, J. E. Marsden, T. S. Ratiu, and A. Weinstein [1985], Nonlinear stability of fluid and plasma equilibria, Phys. Rep., 123, 1–196.CrossRefMathSciNetMATHGoogle Scholar
  24. D. D. Holm, V. Putkaradze, and S. N. Stechmann [2003], Rotating concentric circular peakons, Nonlinearity, submitted; Scholar
  25. D. D. Holm, J. T. Ratnanather, A. Trouvé, and L. Younes [2004], Solitons in computational anatomy, NeuroImage, to appear.Google Scholar
  26. D. D. Holm and M. F. Staley [2003], Wave structures and nonlinear balances in a family of evolutionary PDEs, SIAM J. Appl. Dynam. Systems, 2, 323–380.MATHCrossRefMathSciNetGoogle Scholar
  27. D. D. Holm and M. F. Staley [2004], Momentum dynamics of filaments and surfaces in a set of 2 + 1 and 3 + 1 evolutionary PDEs, in preparation.Google Scholar
  28. Y. Kodama [1985], On integrable systems with higher order corrections, Phys. Lett. A, 107, 245–249.CrossRefMathSciNetGoogle Scholar
  29. Y. Kodama [1985a], Normal forms for weakly dispersive wave equations, Phys. Lett. A, 112, 193–196.CrossRefMathSciNetGoogle Scholar
  30. Y. Kodama [1987], On solitary-wave interaction, Phys. Lett. A, 123, 276–282.CrossRefMathSciNetGoogle Scholar
  31. H. P. Kruse, J. Scheurle, and W. Du [2001], A two-dimensional version of the CH equation, in D. Bambusi, G. Gaeta, and M. Cadoni, eds., Symmetry and Perturbation Theory: SPT 2001, World Scientific, New York, 120–127.Google Scholar
  32. A. Lew, J. E. Marsden, M. Ortiz, and M. West [2003], Asynchronous variational integrators, Arch. Rational Mech. Anal., 167, 85–146.MATHCrossRefMathSciNetGoogle Scholar
  33. A. K. Liu, Y. S. Chang, M. K. Hsu, and N. K. Liang [1998], Evolution of nonlinear internal waves in East and South China Seas, J. Geophys. Res., 103, 7995–8008.CrossRefGoogle Scholar
  34. J. E. Marsden and T. J. R. Hughes [1983], Mathematical Foundations of Elasticity, Prentice-Hall, Engelwood Cliffs, NJ; reprinted by Dover Publications, New York, 1994.MATHGoogle Scholar
  35. J. E. Marsden, G. W. Patrick, and S. Shkoller [1998], Multisymplectic geometry, variational integrators and nonlinear PDEs, Comm. Math. Phys., 199, 351–395.MATHCrossRefMathSciNetGoogle Scholar
  36. J. E. Marsden and T. S. Ratiu [1999], Introduction to Mechanics and Symmetry, 2nd ed., Texts in Applied Mathematics, Vol. 17, Springer-Verlag, New York; 1st ed., 1994.MATHGoogle Scholar
  37. J. E. Marsden, T. Ratiu, and S. Shkoller [2000], The geometry and analysis of the averaged Euler equations and a new diffeomorphism group, Geom. Functional Anal., 10, 582–599.MATHCrossRefMathSciNetGoogle Scholar
  38. J. E. Marsden, T. S. Ratiu, and A. Weinstein [1984], Semi-direct products and reduction in mechanics, Trans. Amer. Math. Soc., 281, 147–177.MATHCrossRefMathSciNetGoogle Scholar
  39. J. E. Marsden and A. Weinstein [1974], Reduction of symplectic manifolds with symmetry, Rep. Math. Phys., 5, 121–130.MATHCrossRefMathSciNetGoogle Scholar
  40. J. E. Marsden and A. Weinstein [1982], The Hamiltonian structure of the Maxwell-Vlasov equations, Phys. D, 4, 394–406.CrossRefMathSciNetGoogle Scholar
  41. J. E. Marsden and A. Weinstein [1983], Coadjoint orbits, vortices and Clebsch variables for incompressible fluids, Phys. D, 7, 305–323.CrossRefMathSciNetGoogle Scholar
  42. M. I. Miller, A. Trouvé, and L. Younes [2002], On the metrics and Euler-Lagrange equations of computational anatomy, Ann. Rev. Biomed. Engrg., 4, 375–405.CrossRefGoogle Scholar
  43. D. Mumford [1998], Pattern theory and vision, in Questions mathématiques en traitement du signal et de l’image, Institut Henri Poincaré, Paris, Chapter 3, 7–13.Google Scholar
  44. J.-P. Ortega [2003], Singular dual pairs, Differential Geom. Appl., 19, 61–95.MATHCrossRefMathSciNetGoogle Scholar
  45. J.-P. Ortega and T. S. Ratiu [2004], Momentum Maps and Hamiltonian Reduction, Progress in Mathematics, Vol. 232, Birkhäuser, Boston.MATHGoogle Scholar
  46. S. Shkoller [1998], Geometry and curvature of diffeomorphism groups with H 1 metric and mean hydrodynamics, J. Functional Anal., 160, 337–365.MATHCrossRefMathSciNetGoogle Scholar
  47. K. L. Vaninsky [2002], The Atiyah-Hitchin bracket and the open Toda lattice, J. Geom. Phys., 46-3 (2003), 283–307.MathSciNetGoogle Scholar
  48. K. L. Vaninsky [2003], The Camassa-Holm equation on the line and Jacobi elliptic coordinates, preprint, 2003; ArXiv:math-ph/0303063.Google Scholar
  49. S. Vasylkevych and J. E. Marsden [2003], The Lie-Poisson structure of the Euler equations of an ideal fluid, preprint.Google Scholar
  50. A. Weinstein [1971], Symplectic manifolds and their Lagrangian submanifolds, Adv. Math., 6, 329–346; see also Bull. Amer. Math. Soc., 75 (1969), 1040–1041.MATHCrossRefMathSciNetGoogle Scholar
  51. A. Weinstein [1973], Normal modes for nonlinear Hamiltonian systems, Invent. Math., 20, 47–57.MATHCrossRefMathSciNetGoogle Scholar
  52. A. Weinstein [1977], Lectures on Cymplectic Manifolds, CBMS Regional Conference Series in Mathematics, Vol. 29, Conference Board of the Mathematical Sciences, Washington, DC.Google Scholar
  53. A. Weinstein [1978], Bifurcations and Hamilton’s principle, Math. Z., 159, 235–248.MATHCrossRefMathSciNetGoogle Scholar
  54. A. Weinstein [1983a], Sophus Lie and symplectic geometry, Expo. Math., 1, 95–96.MATHMathSciNetGoogle Scholar
  55. A. Weinstein [1983b], The local structure of Poisson manifolds, J. Differential Geom., 18, 523–557.MATHMathSciNetGoogle Scholar
  56. A. Weinstein [1984], Stability of Poisson-Hamilton equilibria, Contemp. Math., 28, 3–14.MathSciNetGoogle Scholar
  57. A. Weinstein [1990], Connections of Berry and Hannay type for moving Lagrangian submanifolds, Adv. Math., 82, 133–159.MATHCrossRefMathSciNetGoogle Scholar
  58. A. Weinstein [1996], Lagrangian mechanics and groupoids, Fields Inst. Comm., 7, 207–231.MathSciNetGoogle Scholar
  59. A. Weinstein [2002], Geometry of Momentum, preprint; ArXiv:math/ SG0208108 v1.Google Scholar
  60. Z. Xin and P. Zhang [2000], On the weak solutions to a shallow water equation, Comm. Pure Appl. Math., 53, 1411–1433.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Boston 2005

Authors and Affiliations

  • Darryl D. Holm
    • 1
    • 2
  • Jerrold E. Marsden
    • 3
  1. 1.Computer and Computational Science DivisionLos Alamos National Laboratory MS D413Los AlamosUSA
  2. 2.Mathematics DepartmentImperial CollegeLondonUK
  3. 3.Control and Dynamical Systems 107-81California Institute of TechnologyPasadenaUSA

Personalised recommendations